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Abstract

Software undergoes change at all stages of the software development process.

Changing requirements represent risks to the success and completion of a project. It

is critical for project management to determine the impact of requirement changes

in order to control the change process. We present a requirements traceability based

impact analysis methodology to predictively evaluate requirement changes for soft-

ware development projects. Trace-based Impact Analysis Methodology (TIAM) is

a methodology utilizing the trace information, along with attributes of the work

products and traces, to define a requirement change impact metric for determining

the severity of a requirement change. We define the Work product Requirements

trace Model (WoRM) to represent the information required for the methodology,

where WoRM consists of the models Work product Information Model (WIM) for

the software product and Requirement change Information Model (RIM) for re-

quirement changes. TIAM produces a set of classes of requirement changes ordered

from low to high impact. Requirement changes are placed into classes according

their similarity. The similarity between requirement changes is based on a fuzzy

compatibility relation between their respective requirement change impact metrics.

TIAM also identifies potentially impacted work products by generating a set of po-

tentially impacted work products for each requirement change. The experimental

results show a favorable comparison between classes of requirement changes based

on actual impact and the classes based on predicted impact.

viii



Chapter 1
Introduction

Software undergoes change at all stages of the software life cycle. That is, changes

to requirements may occur at the requirements definition phase, requirements spec-

ification phase, design phase, implementation phase, and maintenance phase. Man-

aging changes to a software product is frequently critical to the success of the prod-

uct [Glass, 1998]. Accepting too many changes will cause delays in the completion

of product, whereas failure to implement critical changes can affect the success

of the product. According to Brooks, “Clearly a threshold has to be established,

and it must get higher and higher as development proceeds, or no product ever

appears,” [Brooks, 1995]. Additionally, the expense of implementing changes in a

software product becomes greater with each subsequent phase in the software life

cycle [Boehm and Papaccio, 1988]. To effectively manage change in software devel-

opment projects, methods are required to provide information about changes, such

as how will the change impact a development schedule or what changes will have

the greatest impact on a product. With information about changes, appropriate

planning can be performed by project management for implementing or deferring

changes.

Software development frequently starts with a customer that has a need that

a software product may satisfy. Initial discussions with the customer and mem-

bers of a software development group will usually yield a requirements definition

document. The requirements definition document records the requirements of the

software system in a manner that is understandable to the customer and to the

designers of the development group. Each requirement in the definition should be
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identified in such a manner that the requirement can be referenced by subsequent

development work or by future changes in the requirements. The requirements

definition document details the needs of the customer and related details of the

customer’s processes that the software system is to satisfy. This document serves as

the mechanism for discussing the goals of the software system with the customer

and may function as part of a contract between the customer and the software

development group [Andriole, 1998].

The next step of development is the requirements specification. While the re-

quirements definition document defines the requirements usually in natural lan-

guage, the requirements specification document defines the requirements using

more technical language the developer can use. The requirements specification

should be unambiguous, therefore formal languages and other formalized tech-

niques are often used in the requirements specification. Formal languages and

techniques provide a strict or more exact model of the requirements definition

to eliminate any ambiguity. Since formal languages may not be understood by

the client, each individual requirement specification should be traceable to a corre-

sponding requirement definition to facilitate future discussions of the requirements.

After the requirements specification is completed, the design of the software

system begins. For most large software projects, a high level design of the system,

called the architectural design, is initially performed. The architectural design is the

first step in deciding how a product will be structured into modules to implement

the requirements. Detailed design further defines the internal structures of modules

and the interactions between modules. The detailed design of the product defines

how the product is to work.

The design is then implemented, or coded, in a programming environment. The

source code is organized into software modules according to the software architec-

2



ture. Test cases are then written to verify the basic operations of the modules. The

software modules are the source code of the software product. Individual testing

of each module is called unit testing.

Software modules are integrated to form the complete software product. Verifi-

cation must be done at this point to ensure the modules interact as designed. This

testing is called integration testing. Testing is also performed to verify that the

product modules are assembled correctly.

When the product has passed integration testing, the functionality of the prod-

uct must be tested and demonstrated. Function testing uses test cases that validate

that the requirements have been satisfied in the complete product. Successful func-

tion testing marks production of a validated software product, ready for customer

acceptance testing.

After the requirements definition, requirements specification, architectural de-

sign, detailed design, implementation, and integration phases, the product is vali-

dated to meet the needs of the customer. The product then moves into the opera-

tional phase where the product is used by the customer.

Most products will undergo changes after they become operational. Frequently,

these changes will be incorporated into a new development cycle that uses the

existing product as the base. These subsequent development cycles create new

versions of the product that supersede the previous version. Changes for a new

release can either correct or enhance the product. Frequently, it is not possible to

include all needed changes and still release the next version in a timely manner. The

decision as to what changes are incorporated into a release is a trade-off between

development time and changes critical to the success of the product. Some changes

may be saved for a future release of the product in order to deliver a version of the

product that includes more important changes in a timely manner.
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The requirements definition, specification, design, implementation, and opera-

tional phases are the general software development phases. The exact manner in

which these phases are executed depends on the development model.

The most straight forward development model is the waterfall model [Royce,

1970]. Each phase of development is completed before the next phase is started,

as shown in Figure 1.1. In this model the entire product is delivered at the end

of development to the customer. The benefit of the waterfall model is the delin-

eation of development activity into the separate phases, each with clearly defined

outputs. However, the model is fairly rigid, requiring the activity of each phase to

be completed before moving to the next phase.

The incremental life cycle model delivers successive builds of the product to

the customer, until the entire product is completed [Schach, 1999]. Once the re-

quirements definition, requirements specification, and architectural design are com-

pleted, multiple iterations of detailed design and implementation occur, where each

iteration’s build adds a subset of the functionality of the product until the com-

plete functionality is delivered. This model provides the customer with a view

of the product before complete functionality is delivered. Developing the product

by this model requires the product to be designed in a manner that each build

easily includes the newly completed functionality. This model often results in a

product with an open architecture that facilitates the addition and modification

of functionality. Figure 1.2 shows the incremental model.

To address the risks associated with major software products, the spiral life

cycle model incorporates strict verification and risk analysis tasks between each

phase [Boehm, 1988]. The risk analysis is performed to determine the objectives,

alternatives, and constraints at each phase. Then, risks are identified, alternatives

are evaluated, and risk resolution is attempted. If the risks cannot be resolved,
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the project can be ended at that point, saving additional expense on the project.

Failure to adequately manage risks associated with software development is one

reason for large cost overruns in some software projects [Boehm, 1988].

The development of object oriented software is highly iterative, with the products

in each phase are refined on each iteration. This practice has been described in the

fountain life cycle model [Henderson-Sellers and Edwards, 1990]. The phases of the

software life cycle overlap. Some activities performed in the phases are performed

in parallel. Often discoveries in a latter phase require the revisiting of activities

performed in an earlier phase.

In practice, variations of these models are used to fit the needs and the expe-

rience of the development group and customer. Two emerging models, extreme

programming [Beck, 1999] and synchronize and stabilize [Cusumana and Selby,

1997], are examples of models created for specific types of projects and corpo-

rate cultures. In the extreme programming model, the development team selects a

small set of requirements that are related to a feature, or story, to implement. The

product is rapidly built to support this story and released to the customer. This

process repeats until all the features required by the customer are implemented.

Adaptability to vague and changing requirements is a key feature of the extreme

programming model.

The synchronize and stabilize model, used by development organizations within

Microsoft, is also similar to the incremental model. In this model, as soon as a

feature is implemented, the code is integrated into the product during the daily

build. Testing and debugging is performed after each daily build. Periodically the

product is stabilized by halting the addition of features and working to remove

the remaining flaws in the product. The synchronize and stabilize model allows
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concurrent testing and program development along with the ability to incorporate

customer feedback during development.

Regardless of the type of model used, the completed software product includes

product documentation, source code, test suites, as well as the executable product.

The product documentation is a collection of the documentation used in develop-

ment of the product, from requirements through design to source code documen-

tation. This information is important for future changes to the product so that

appropriate analysis and caution is used when making a change to the product

[Basili, 1990]. A developer making a change to a product that is being used by a

customer should understand the design and implementation of the product. There

are several reasons to make sure a developer understands the architecture and

design of the product in sufficient detail. One is to ensure that the change is com-

pletely implemented within the product. Another is to prevent new faults from

being introduced in the product as a result of changes in the product. For exam-

ple, when an interface is changed between two modules, if other modules that use

the called module are not changed to reflect the new interface, new faults would be

introduced into the product. One other reason for the importance of attention to

the product documentation is to make sure that the architecture of the product is

not compromised and future maintenance made more difficult. An example could

be a developer adding code to handle a unforeseen exception condition and not

utilizing a sophisticated exception processing facility designed into the product

that should have been invoked.

1.1 Managing Software Changes

The ability to manage change during software product development is critical for

completing the product and satisfying the needs of the client requesting the prod-

8



uct. According to Brooks, changeability is one of the essential difficulties of software

production [Brooks, 1987]. Software is frequently the most malleable component

of a system, and therefore it is most likely to be changed. If changes to a software

development project are not restrained, expectations for meeting estimates are not

realistic. However, changes must be allowed so that the product satisfies evolving

needs of the client [Kotonya and Somerville, 1998].

In the early stages of development during requirements definition, a set of re-

quirements is created that identifies the needs of the client. During product de-

velopment, changes to this set of requirements may be needed. These requirement

changes are modifications to existing requirements or new requirements that may

or may not affect existing requirements. It is naive to expect that no changes would

be made after requirement specification. IBM’s Santa Teresa Laboratory reported

that an average of 25% of the requirements for an average project will change

before completion of the project [Boehm, 1981]. A number of reasons exist for re-

quirements changes, including: changes in customer needs or wants, clarification of

requirements, changes in the target operating environment, and correcting errors

in requirements [Bohner, 2002].

Requirements changes must be considered so that the product will satisfy the

needs of the client; however, not all changes are equal [Bach, 1999]. Some changes

may be critical to the success of the product, whereas some changes may be optional

and thus should be included in a particular version of the product only if time

allows. The ability to determine the risks that the change has on the potential

to complete the product within established schedules represents a key aspect of

project management [Kotonya and Somerville, 1998].

It is vitally important that project managers have information available to en-

able appropriate decisions to be made with respect to changes introduced during
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product development. In general, management has three choices when present a

change. First, the change can be incorporated in the current product development.

This may require more resources to be allocated to the project and cause delays in

delivering the product. Second, the change can be deferred from current project,

to be included in the product at a future date. Lastly, the change can be rejected.

In [Jones, 1995], creeping requirements, which includes changes to current re-

quirements, are identified as one of the top ten factors associated with the success

or failure of a software project. Projects that fail to control changes to requirements

and quantify the impact of changing requirements imbibe a risk to the successful

completion of the project. Since requirement changes can be costly, frequently a

formal business case must be made to justify the requirement change in a software

project [Maciaszek, 2001].

Impact analysis is used in many different forms to manage changes to software.

Impact analysis, as defined by Arnold and Bohner, “is the activity of identifying

what to modify to accomplish a change, or of identifying the potential consequences

of a change,” [Arnold and Bohner, 1993]. There are several areas of research that

are investigating how to measure the impact of change. Some techniques are source

code based. The research using this approach focuses on the dependencies that ex-

ist in the source code in order to determine what program elements may be affected

by a change. Various types of program dependency techniques have been proposed,

including control and data dependency [Podgurski and Clarke, 1990; Loyall and

Mathesen, 1993] and program slicing [Horwitz et al., 1990; Chen et al., 1996]. A sec-

ond research direction uses traceability relationships between all work products or

documents created during development. Bianchi, et.al., use several types of traces

to predict impacted components of a software system [Bianchi et al., 2000]. Other

traceability approaches view work products as documents, incorporating traceabil-
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ity as hypertext links or as interfaces between documents [Garg and Scacchi, 1990;

Horowitz and Williamson, 1986]. These approaches attempt to identify what may

be modified to make a change.

One problem resulting from incorporating changes in a software product after

the requirements definition is that the change may only be reflected in work that

has yet to be completed. When this occurs, requirements, design documents, and

other product documentation become incorrect and outdated. Product documen-

tation that does not reflect the actual product makes product maintenance difficult

as the product source code must be used as the arbitrator of what the product

does. Unfortunately in practice, developers rarely update existing documentation

due to limited resources. As noted by Lindvall and Sandahl, experienced developers

usually assume that the documentation is outdated and rely mainly on source code

when making changes[Lindvall and Sandahl, 1998a]. The appropriate implemen-

tation of changes includes the updating of the product specification and design to

reflect changes to the source code of the product [Maciaszek, 2001]. It is important

to include the additional work that keeps the product documentation current as

part of impact analysis.

1.2 Change Scenarios

To emphasize the need to manage changes, we present the following scenarios. The

first scenario involves management’s need to determine the impact of planning for

a more flexible information technology infrastructure, specifically allowing a choice

of database management systems. The second scenario describes a policy change

that must be incorporated into the supporting software application.

The first scenario involves a company that is developing a new inventory control

system. The company’s current information systems are based on a single vendor’s

11



database management system (DBMS). Since the current software development

organization is experienced with using the existing DBMS, it is a requirement

for the new inventory control system to use the proprietary database interface to

the existing DBMS. Management has decided to investigate minimizing the risk of

depending on the vendor of the existing DBMS. A standard is evolving to uncouple

database applications from specific DBMS, called Open Database Connectivity

(ODBC). Since the existing DBMS has an ODBC interface, management wishes to

know if the new inventory control system under development can be changed to use

the ODBC interface rather than the proprietary database interface. Implementing

this change would allow the company to choose a new DBMS in the future without

significant changes to the inventory control system.

Determining the impact of the ODBC migration scenario depends on how far the

development of the inventory control system has progressed and the architecture

of the inventory control system. If the development of the system has not reached

the design phase, the impact of the change on the product should be minimal,

since there is nothing to change except for requirements documents. However, if

the system has been designed and possibly source code modules completed, then

any design documents and source code modules including a database interface

would be impacted and require modification. If the architecture of the inventory

control system isolates the DBMS access from the business application functions,

the impact would be less than if many modules implementing application functions

independently access the DBMS.

Impact analysis of this scenario should be able to give information on what may

be impacted and by to what degree, if the change was to be made, without regard

to what point development has progressed on the product or dependent on the

product architecture. Management would use this information to decide if it was
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cost effective to migrate to ODBC at this time or defer the migration to a later

date. Management may determine that the costs are to high to migrate at this

point, or they may find that the costs of the migration would be offset by the

savings incurred by using another vendor’s DBMS.

The second scenario involves a university. To enroll in classes that have pre-

requisite courses, a student must have passed the prerequisite courses with the

required grade or the student is automatically withdrawn from the course at the

start of the term. A student is allowed to retake a prerequisite course only twice.

The university’s enrollment system implements this restriction. A new policy has

been made that removes the limit to the number of times a student may retake a

course, but the student must have approval from the dean of the college in which

the course is offered when enrolling in a course after the second time.

In this scenario, the change must be implemented. Management of the university

enrollment system requires information from impact analysis to determine the

extent of the impact in order to schedule resources for implementing the policy

change. Additionally, impact analysis should be performed after changes have been

implemented to ensure that no other restrictions in the enrollment system are

affected.

1.3 Research Objective

The research objective is to develop a predictive impact analysis technique that

identifies classes of requirements changes that have similar impact levels. By pre-

dicting the impact that requirement changes may have, the effects of making a

requirement change can be compared to other requirement changes with respect

to the predicted effort to implement the change. This information can be used
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as a criterion in a process that selects which changes can be implemented within

schedule constraints.

We develop formal models and a general methodology for applying requirement

traceability to impact analysis. Next, we develop a specific instance of the gen-

eral methodology to use for impact analysis. Finally, the specific instance of the

methodology is applied to a software development project to evaluate capability

of the methodology for impact analysis.

The general methodology for using requirement traces for impact analysis in-

cludes the definition of formal models that represent a software development project

and a set of requirement changes. The models include information on attributes

of the work products and traces. The attributes are complexity, effort, phase, and

influence. The methodology defines an impact metric that is directly related to

the effort predicted to implement a requirement change. With these results the

requirement changes are grouped into classes of changes that have similar impact.

The specific instance of the impact analysis general methodology defines the

attribute levels that are used to describe the work products and traces. The in-

stance is applied to a software development project in which the actual impact

with respect to effort is documented. The actual impact information is used to

classify changes into groups with similar impact. These results are compared with

the results from our impact analysis methodology.

1.4 Motivation

This research is motivated by the continuing need to increase the efficiency of

software evolution. Previous work has focused on impact analysis for maintenance

changes to completed software product using traceability. The use of traces be-

tween work products is an appropriate basis for impact analysis for software prod-
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ucts [Strens and Sugden, 1996]. Research providing impact analysis for software

products during development is needed [Zave, 1997]. The traceability approach

does not depend on the internal structure of the work product, therefore is suit-

able to apply to a software project that is in progress, where work products may

not be developed to the degree that would allow the internal structure to be used

for any analysis. Also, previous work has focused on the work products that may

be impacted but not on the effect of the change on resources.

Further, to improve software evolution we need to be able to evaluate a set of

proposed changes to software product in order to help assess the degree of impact a

change may have on the software project with respect to the other proposed changes

[Nuseibeh and Easterbrook, 2000]. This information would allow management of

the project to initially determine potential impacts on resources and what changes

may require significant changes in resources to implement.

1.5 Summary

Requirement changes during the development of a software product threaten the

timely completion of the product and the proper documentation of the product.

The decision to incorporate changes during development should allow for the mod-

ification of work products that have been completed so that all documentation is

correct and so that those who perform future maintenance will not be dependent

solely on the source code to determine what the product does.

This research determines the impact that a change has on existing work for

a software product. It derives a comparative relationship of severity of impact

between changes, and evaluates changes that are modifications to existing require-

ments or new requirements that affect existing requirements. The evaluation is a

prediction of the amount of effort required to modify existing work to make the
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changes. We categorize the changes into groups of varying impact, and we order

the groups based on low to high impact.
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Chapter 2
Background and Related Research

2.1 Introduction

The field of software engineering is concerned with delivering quality software,

within budget and schedule constraints, that satisfies the needs of the client and

user. Since changeability is a essential aspect of software [Brooks, 1987], much of the

research has focused on change. Techniques used for requirements engineering seek

to manage change by documenting sources of information, and providing formal

methods to introduce changes. Methods of impact analysis have been used during

the maintenance phase of software life cycle to determine the effect of a change

or predicting the effect of a potential change. This research is concerned with

distinguishing the severity between changes. In Section 2.2 we define terms used in

this research. Sections 2.3 - 2.7 review related research in requirements engineering,

traceability, impact analysis, graph theory, and fuzzy set theory, respectively.

2.2 Terminology

In this research, we use the following terms:

Impact analysis is the task of identifying the potential consequences of a

change, or estimating what needs to be modified to accomplish a change [Arnold

and Bohner, 1993].

A requirement is a statement of a system service or constraint [Maciaszek,

2001].

A requirement change is either a modification to an existing requirement or

a new requirement that may or may not affect existing requirements. Requirement

changes occur after the finalization of the requirements specification.
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Requirements traceability is the ability to describe and follow the life of

a requirement, in both a forward and backwards direction (i.e., from its origins,

through its development and specification, to subsequent deployment and use, and

through all periods of on-going refinement and iteration in any of these phases)

[Gotel and Finkelstein, 1994].

A work product is a concrete, planned result of the development process [IBM

Object-Oriented Technology Center, 1997]. In this research, work products are

software artifacts that must be maintained or recreated when the details on which

the artifact was based change [Gotel and Finkelstein, 1997]. Examples include a

use case, a class model, an object collaboration diagram, other UML diagrams, a

source code module, and a test case.

2.3 Requirements Engineering

Requirements engineering is one branch of software engineering that has emerged to

facilitate the development of software that truly meets the needs of the client [Zave,

1997]. Requirements elicitation and specification, identification of the stakeholders

of a software product, and verification that the needs of the client have been meet

are key issues in requirements engineering [Nuseibeh and Easterbrook, 2000]. As

requirements evolve during the course of software development, the management

of risk to the product from changing requirements is an important function of

requirements engineering [Keil et al., 1998].

One problem identified by Zave is, “Many requirements are not absolute; they

can be satisfied partially, or only if resources permit,” [Zave, 1997]. Some require-

ments can be categorized as imprecise. An imprecise requirement can be satisfied

to a range of satisfaction degrees. Design decisions between design alternatives

made during product development determine the degree that a requirement can
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be satisfied. Yen and Tiao present a framework that allows design alternatives to

be evaluated by determining relationships between requirements and design alter-

natives [Yen et al., 1996], [Yen and Tiao, 1997]. Additionally, the rationale for the

selection of specific design alternatives can be captured. When there are a number

of imprecise requirements and multiple design alternatives that can be chosen, a

design alternative may increase the satisfaction of one or more requirements at

the cost of decreasing the satisfaction of one or more other requirements. Yen

and Tiao’s approach utilizes fuzzy logic to find the set of design alternatives that

maximizes the satisfaction of requirements for the complete product.

Frequently there are requirements that should be implemented only if the in-

clusion of such requirements does not adversely impact the delivery of the prod-

uct. In this case, project management should employ a method for prioritizing

requirements [Siddiqi and Shekaran, 1996; Karlsson and Ryan, 1997] or negotiat-

ing requirements [Olphert et al., 1994]. Research into the prioritization of require-

ments focuses on maximizing value or satisfaction and minimizing cost. For many

projects, trade-offs must be made in selecting requirements so that the product may

be completed within given time constraints. The value of a requirement is deter-

mined by the client and is relative to the other requirements. Karlsson and Ryan

present an approach that ranks requirements at three levels, from one to three,

where one denotes the highest level [Karlsson and Ryan, 1997]. A requirement’s

cost is determined relative to other requirements, with the sum of all requirements

equal to 1. This work prioritizes requirements according to the cost-value ratio.

The cost-value ratio facilitates the identification of requirements that have a high

cost and a low value to the product. Failure to deliver requirements in a high

cost, low value group can decrease development cost without jeopardizing client

satisfaction. Jung [Jung, 1998] presents a knapsack approach based on the cost
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and value determination of Karlsson and Ryan’s work. This approach finds a set

a requirements that maximizes value while minimizing cost.

The management of changing requirements must be actively performed during

a software development project to ensure the a product is delivered and that the

product is usable by the customer [Sugden and Strens, 1996]. First steps of risks

management are the identification of risks and the evaluation of the impact of

risks on the project [Williams et al., 1997]. Properly documenting a requirement

change as a risk is appropriate and should be part of the software development

process. Then impact analysis can be performed to understand the degree of risk

that a requirement change poses. With this information, management is able to

perform a risk assessment and plan a course of action [Lam and Shankararaman,

1999]. Risks from requirement changes can be identified by analyzing requirements

and determining which requirements are particular sensitive to change [Strens and

Sugden, 1996]. These requirements are called volatile requirements and represent

potential risk to a project. Appropriate risk mitigation includes accounting for

the volatility of these requirements in the product design to minimize the risk

to the project. The WinWin system, [Boehm and In, 1996], can be used for the

management of requirement changes by following a scheme that evaluates the value

of the change to the stakeholders and the risks to the project and seeks to resolve

risks to the satisfaction of all stakeholders.

Requirements engineering is still an evolving discipline [Zave, 1997]. Resources

for requirement engineering are increasing. Tools and processes are being developed

and explored [Juristo et al., 2002]. However, these tools cannot be used in isolation

from the overall software development process [Nuseibeh and Easterbrook, 2000].
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2.4 Impact Analysis

Impact analysis is defined by Bohner and Arnold as “identifying the potential

consequences of a change, or estimating what needs to be modified to accomplish

a change” [Bohner, 1991]. Risk assessment is also associated with the task of impact

analysis [Pleeger and Bohner, 1990]. The motivation behind impact analysis is to

identify work products that may be affected by a change. With information on

the objects that may be affected, plans can be made to determine what actions

must be undertaken with respect to the change. Any change deemed necessary to

implement will involve some rework of existing work products or tasks.

There are two main approaches to impact analysis, dependency analysis and

traceability analysis. Dependency analysis is the analysis of relationships between

program source code statements. Traceability analysis uses the relationships be-

tween work products for analysis, including design, program source code, and doc-

umentation. Dependency relationships can be found by automatic evaluation of

source code, whereas traceability relationships may have to be explicitly expressed

between work products [Spanoudakis, 2002].

Dependency analysis determines impact by exploring the internal structure of

software code modules to identify relationships between the modules [Bohner and

Arnold, 1996]. This approach focuses on the dependencies that exist in the source

code in order to determine what program elements may be affected by a change.

Various types of program dependency techniques have been used, including control

and data dependency, [Podgurski and Clarke, 1990; Loyall and Mathesen, 1993]

and program slicing, [Horwitz et al., 1990; Chen et al., 1996].

Control dependency uses a program’s conditional structures for analysis and

data dependency uses a program’s variable usage for analysis [Podgurski and

Clarke, 1990]. A control dependency exist if a statement contains a conditional
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that controls the execution of several alternative program execution paths. Data

dependency is established when a statement modifies a variable that is used in

a subsequent statement [Loyall and Mathesen, 1993]. When a program statement

is modified, statements which have either dependency on the modified statement

may be impacted by the modification.

Program slicing limits the scope that is considered for impact analysis by consid-

ering only the sections of the original program which can be affected by a change.

A slicing criteria, S(v, n), defines a code slice on variable v at statement n in a

program producing the sections of the program that affected the value of v before

the execution of statement n, [Weiser, 1984]. The slices are determined by control

and data information from the program. By excluding code that is not affected by

the change, analysis and testing of the change is simplified [Gallagher and Lyle,

1991].

Traceability analysis uses relationships between types of work products for anal-

ysis, from requirements through design and code modules to testing and docu-

mentation. Dependency analysis allows a more detailed analysis than traceability

analysis due to the explicit nature of source code, but is limited to the analysis of

code modules. Typically the lack of detailed information between work products

limits the effectiveness of traceability analysis. However, if traces are available a

more extensive view of an impact on the software project as a whole can be deter-

mined.

2.5 Traceability

Traces can document the life cycle of a requirement, from the original client needs

that created a requirement to the work products that lead to a software product

that satisfies the requirement. A trace establishes a link from one work product
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to another. Initially, requirements traceability was established as a mechanism

for ensuring that the objectives, that is the requirements, of a product can be

shown to have been satisfied. Today, traceability is used to additionally record the

processes, stakeholders, and products involved in the work product’s production.

Current uses of requirement traces include quality assurance, reuse of components,

testing, maintenance, change impact analysis, and process control [Pohl, 1996].

By the requirements specification document, requirements traceability is sepa-

rated into two areas, pre-traceability and post-traceability. Pre-traceability links

information regarding the sources of a requirement before the requirement is in-

cluded in the requirements specification. Traces joining aspects of a requirement

after placement into the requirements specification are called post-traceability links

[Gotel and Finkelstein, 1994].

Forward to requirements and backwards from requirements links are pre-trace-

ability links. Pre-traceability provides a method to document the source of re-

quirements, specifically the business needs and political contexts in which they

were created [Jarke, 1998]. Figure 2.1 illustrates pre-traceability links.

Post-traceability provides forward from requirements and backward to require-

ments links. Forward from requirements links allow the satisfaction of a require-

ment to be exhibited. Backward to requirements links facilitate finding the sources

of a work product, providing the ability to find why and for what requirement

a work product exists. These links provide information needed to ensure that re-

quirements have been implemented in the product and that all features in the

product are verified to satisfy the requirements [Jarke, 1998]. Figure 2.2 diagrams

post-traceability links.

Much of the work on impact analysis using traceability has been limited to

source code analysis or has been integrated into software development environ-
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ments, [Bohner and Arnold, 1996; Queille and Voidrot, 1994]. Source code analysis

is usually done after a change is made [Yau, 1988].

Code evaluated after a change has been implemented does not account for the

overall impact to a software project. Work products such as design documents and

test cases should be kept up-to-date and should be considered as part of the impact

analysis.

Pfleeger and Bohner address the consequences of making a change by identifying

complexity metrics that use traces to analyze the consequences of making a change.

Traceability analysis was used to evaluate the impact of performing software main-

tenance. This work, which uses forward from requirements traces, defines two types

of traces. Horizontal traces are traces that link work products in subsequent devel-

opment phases, and vertical traces link work products within the same development

phase. Complexity metrics based on these horizontal traces and vertical traces were

defined. The objective was to ensure that only changes that did not increase the

complexity metrics would be incorporated, with the goal that the product’s de-

sign would evolve to minimize the impact of changes, [Pleeger and Bohner, 1990;

Bohner, 1991].

A few software development environments have included some ability for trace-

ability analysis in varying degrees, including ALICIA, SODOS, PMBD, and System

Factory [Arnold and Bohner, 1993]. ALICIA stores the existence of software work

products, but does not the store the content of work products. Navigation, via

trace relationships is provided. SODOS enables the traceability and navigation of

software documentation by the establishment of hyper-link between documents.

PMDM is an integrated software engineering database which supports traceabil-

ity but has no direct support of impact analysis. System Factory is similar to

SODOS in that it supports a hypermedia view of software documentation. None
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of these environments enable vertical traceability, limiting the ability of the sys-

tems to even identify all potentially impacted objects. Additionally the granularity

of these systems varies from the document level (e.g. the requirement specifica-

tion) to the statement level of a code module. Current traceability tools, including

DOORS and RTM, allow vertical traceability and horizontal traceability between

work products. These newer tools allow the entities, relationships, and attributes

of a development project’s artifacts be defined for traceability analysis. Therefore,

any work product can be represented as a traceable entity in these tools, but the

work products may actually be stored external to the tool.

Table 2.1 lists existing impact analysis methods. Most trace-based impact anal-

ysis methods predict the work products that may be modified because of a change

to the product. This results in the estimated impact set [Arnold and Bohner, 1993].

Implicitly, those work products not in the estimated impact set, are not predicted

to be modified. After a change is made to a product, the set of actually modified

work products and the set of actually unmodified work products can be deter-

mined. The predicted outcome can be compared to the actual, resulting in four

sets, shown in Figure 2.3, [Lindvall and Sandahl, 1998b]:

• Modified work products that are predicted to be modified.
• Unmodified work products that are not predicted to be modified
• Modified work products that are not predicted to be modified.
• Unmodified work products that are predicted to be modified.
The first two sets indicate when the impact analysis was correct. The latter

two sets represent when the impact analysis prediction was incorrect. In [Lindvall

and Sandahl, 1998b], using prediction of impacted work products by experienced

developers, two common results were found. The predicted to be modified set was
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too small, that is not enough work products were predicted to be modified. The

other result was that some work products were predicted incorrectly.

text

All work products

Not predicted and
not modified

(correct)

 Predicted and
not modified

Predicted and
modified
(correct)

Predicted to
be modified

work products

Not predicted but
modified

Actually modified
work products

FIGURE 2.3. Diagram showing relationship between predicted impact set and actual
impact set

Barros,et al., developed an Impact Analysis System (IAS) as a tool for impact

analysis based on representing a software system as a system of typed objects,

work products, and the dependency links between work products [Barros et al.,

1995]. The dependency links include composition links, life-cycle traceability links,

version links, and documentation links. Composition links are discovered when a

work product is defined or encompassed by another work product and version links
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are created when the source code diverges due to multiple releases of the product.

The work products and associated links form a dependency graph which is used for

impact analysis. IAS allows a detailed description be made of desired modifications.

The potential impact is determined by tracing potentially impacted work products

via the dependency graph and propagation rules. There is a high level of interaction

with the user of IAS to validate or invalidate the resulting impact set following

a propagation. IAS is proposed as a tool to assist a maintenance developer with

determining potentially impacted work products rather than performing actual

modifications to the software system or providing any cost or schedule impacts.

Lindvall and Sandahl investigated using traceability for impact analysis for plan-

ning activities of new releases of a software product, [Lindvall and Sandahl, 1998b;

Lindvall and Sandahl, 1998a]. They evaluated the availability of the following four

types of traces for impact analysis:

1. Traces via explicit links, explicit traces, usually within the development en-

vironment, provided between work products in successive stages of develop-

ment.

2. Traces by using references, which are textual references within a work product

to another work product.

3. Name tracing, which can be used when a naming scheme allows searching

for related work products.

4. System knowledge and domain knowledge provided by experienced software

developers applying implicit knowledge of the software product.

They found that system knowledge and domain knowledge are the primary

sources used by developers to predict which classes are impacted by changes. Their

work uses only class source code modules as the set of work products that may

be impacted by a change. Typically the number of actually impacted classes was
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under-predicted by the impact analysis by developers. However, for each change,

60% to 100% of the predicted impacted sets of classes were actually changed.

Bianchi, et al., [Bianchi et al., 2000] published a case study of the effectiveness

of traceability models. This is a small exploratory case study based on a class

project utilizing structural, name tracing, and cognitive links. The structural links

are requirement traces and the cognitive links are based on system and domain

knowledge. Additionally, the study was conducted using two different granularities

of work products. The coarse granularity defined a work product as the entire

source code class definition, whereas the finer grained work products were a subset

of methods and attributes from a class definition. For both levels of granularity

the actually impacted set of work products was included within the predicted

impact set of work products. The number of predicted impacted work products

that were not modified was higher for the finer grained model; however, this set

of work products was a smaller percentage of the entire system than the coarser

grained model. The analysis effort was also higher for the finer grained model.

They discovered that when changes where implemented in the finer grained model,

fewer faults were found. Even though greater analysis effort is required for the finer

grained model, the authors indicate that the effort results in fewer faults when the

modifications are implemented.

The decision to use requirements traceability must be made by management and

integrated into the development process, [Gotel and Finkelstein, 1994; Ramesh et

al., 1995]. The types of traces that should be implemented should be determined

by the use of the traces and the quality of the analysis that can be obtained from

the traces [Cimitile et al., 1999]. At the current time, requirements traceability

is a manually intensive process, however there is research to provide tools and
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TABLE 2.1. Comparison of Impact Analysis Approaches

Approach Types of Links Results
Pfleeger & Bohner Requirement Traces Complexity Measures
Barros, et al Dependency and Re-

quirement Traces
Interactive identification of po-
tentially impacted work prod-
ucts

Lindvall & Sandahl System and Domain
Knowledge

Potentially impacted classes

Bianchi, et al. Structural, Naming,
and Cognitive

Finer grain work products pro-
duce better impact analysis, but
at a higher effort

processes to facilitate the automatic creation of traces, [Spanoudakis, 2002; von

Knethen, 2002].

2.6 Graph Theory

Many problems exist in the real work that can be represented visually by a diagram

of points connected by lines that represent some relationship between the points.

Diagraming work relationships between employees of a company could be done by

representing the employees by a set of points and drawing a connecting line between

two points if the employees represented by the points work on the same project.

Another example is a subway system. The points would represent the stations of

the subway system and a line connects two points if there is train service from one

station to the other with no stops. Such representations provide a mechanism to

determine whether employees work on the same project or whether there is direct

train service between two specific train stations. These and similar concepts can

be represented as a graph.

A graph, G, is defined as the tuple hV (G), E(G),ψgi, where V (G) is a non-empty
set of vertices, E(G) is a set of edges such that V (G)∪E(G) = ∅, and an incidence
function ψg which associates each edge in E(G) with a pair of vertices in V (G)
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[Bondy and Murty, 1976]. The vertices, or nodes, are the points in the previous

example and the lines are edges, or arcs. Consider the graph shown in Figure 2.4.

G = hV (G), E(G),ψGi
where:

V (G) = {v1, v2, v3, v4}
E(G) = {e1, e2, e3}
and ψG is defined by

ψG(e1) = v1v2, ψG(e2) = v2v3, and ψG(e3) = v2v4.

v1

v2

v3 v4

e
1

e 2
e
3

FIGURE 2.4. Graph G

Several special classes of graphs are of interest in this research. A complete graph

is a graph in which every pair of distinct vertices is connected by an edge. A graph

H is a subgraph of G, if V (H) ⊆ V (G), E(H) ⊆ E(G), and ψH is restricted to ψG

defined for E(H). A clique is a subgraph that is also a complete graph.

2.7 Fuzzy Set Theory

Fuzzy set theory is useful for modeling imprecise concepts. In conventional set

theory, an element is either a member of a set or not a member of a set. These

sets are called crisp sets. Membership in a set, S, can be determined by mapping

the elements in an universal set, U , to 0 or 1 with the membership function m,

where m : U → {0, 1}. Therefore, for every x ∈ U, x ∈ S iff m(x) = 1. Fuzzy sets
are used to represent imprecision about set membership. Each element in a fuzzy
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set has a degree of membership associated with it. The degree of membership is

defined by a membership function, A, where each element x of U is mapped to a

number in the closed interval [0, 1], A : U → [0, 1] [Klir et al., 1997].

One application of a fuzzy set is the concept of a long book. Some readers would

consider a book of more than 100 pages to be long, while other readers may not

think a book is particularly long unless it at least 500 pages long. These differing

views can be modeled by a fuzzy set with the membership function L:

L(x) =


1 when pages ≥ 500

pages−100
400

when 100 < pages < 500

0 when pages ≤ 100


To select subsets of a fuzzy set that have at least some degree of membership, an

α-cut, αL, of the fuzzy set can be used. The α-cut of a fuzzy set is the set of all

elements whose membership degrees are greater than or equal to the value of α.

The α-cut of 0.90L would be the set of books that are 460 pages or more in length.

Fuzzy binary relations may be defined for the elements of a set. Fuzzy relations

can be used to describe the similarity between two elements. If the fuzzy relation

is reflexive and symmetric, but not transitive, it is a fuzzy compatibility relation.

An α-cut of a fuzzy compatibility function can be used to partition a set into fuzzy

compatibility classes. The members within each compatibility class are considered

similar. The similarity between four items given by a fuzzy relation R, is shown by

the matrix in Equation 2.1 and diagramed in Figure 2.5.

R̂ =



1 .4 1 .8

.4 1 .8 1

1 .8 1 .6

.8 1 .6 1


(2.1)
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FIGURE 2.5. Representation of a fuzzy compatibility relation

The compatibility classes for this relation of α-cuts for α = 1, 0.8, 0.6, 0.4 are:

α = 1.0 : {1, 3}{2, 4}.
α = 0.8 : {1, 3}{1, 4}{2, 3}{2, 4}.
α = 0.6 : {1, 3, 4}{2, 3, 4}.
α = 0.4 : {1, 2, 3, 4}.

The value of α determines the degree of similarity between the members of a

compatibility classes.

2.8 Summary

We presented key research initiatives that provide a foundation for this research.

We focused on traceability, which is the basis for the impact analysis method used

in this research. We also included background information on graph theory and

fuzzy set theory, with specific details on compatibility classes since this technique

will be applied to the impact analysis results to distinguish the impact between

proposed requirement changes.
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Chapter 3
Modeling Software Changes

3.1 Introduction

Impact analysis requires a representation of the work products that are created to

implement the software product. In this research, we define models representing

the information required for performing impact analysis.

The work products created during software development include requirements,

design diagrams, source code modules, and test cases. The relationship among

these work products can be identified by using requirement tracing. Forward from

requirements traces identify the work products that satisfy a requirement and

therefore the work products that are most likely to be changed if the requirement

is changed.

In order to perform impact analysis, we must have an understanding of the

items that are created during a software development project and the relationships

between those items. The formal representation for a software development product

and its requirement changes consists of information about the items, work products

that are part of the development project, and the developmental relationships

linking the work products. The models, which are designed to capture information

about the development project, assume traceability as a part of the development

process.

3.2 Software Change Models

We define two models to capture information about the software development

project and the proposed requirement changes, the Work product Information

Model (WIM) and the Requirement changes Information Model (RIM). These two
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models together are referred to as the Work product Requirements trace Model

(WoRM). WoRM is the basis for the Trace-based Impact Analysis Methodology

(TIAM) that is presented in Chapter 4.

WIM encapsulates information about the work products that are created to

develop a software product. The primary components of WIM are the forward from

requirement traces and the work products. The model also includes information

about attributes of work products and traces that are used in TIAM.

RIM contains information on the requirement changes that are the focus for the

analysis. It represents a set of associations between requirement changes and the

requirements to be modified, along with a measure of the severity of the change.

The elements of the models, WIM and RIM, are the work products, forward

from requirement traces, attributes associated with each work product, and an

attribute associated with each trace.

3.2.1 Work Products and Traces

As defined in Section 2.2, a work product is a clearly defined piece of work that

is to be maintained and whose developmental influences can be traced [Gotel and

Finkelstein, 1997; IBM Object-Oriented Technology Center, 1997]. The granularity

of the work products determines the effectiveness of the impact analysis. Granu-

larity refers to the amount of information contained in each work product. Each

work product should encapsulate as few details as possible, producing a fine gran-

ularity for effective analysis. Each requirement should be a separate work product.

A design document such as a complete object table for an entire product is too

coarse and should be subdivided into work products of class or object diagrams

with one or more classes that are hierarchically or operationally related. Likewise

for source code, a source code work product should be at most one class definition
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and methods. A source code work product may contain only extensions to a class,

which are a set of related methods added to a class.

Forward from requirements traces show the satisfaction of a requirement by

linking products such as requirements to design and design to source code work

products. These traces can be represented by a directed graph as described by

[Pleeger and Bohner, 1990; Pfleeger, 1998; Bianchi et al., 2000; Turver and Munro,

1996].

3.2.2 Attributes for Work Products and Traces

The model uses external attributes about each work product. External attributes

are used so that all work products in a development project are treated in an

uniform manner.

The external attributes for each work product are:

• Complexity of a work product
• Effort required to produce the work product, measured in person-hours
• Development phase in which the work product was created.
Developers assign values to the attributes as part of the development process.

Examples of typical levels for the attributes are presented in Section 3.2.4.

The complexity of a work product is the degree of difficulty required to create a

work product. The attribute value should be selected from a set of predefined levels

for the development project. The number of levels and associated values could be

extracted from cost models such as Boehm [Boehm, 1981] or from historical data

about the development team. We provide an example in Section 3.2.4.

The effort attribute represents the amount of resources required to develop the

work product. It must apply equally to work products in all phases of software
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development. We use the number of person-hours required to create a work product

as the value of the attribute.

The development phase is used to account for the increased effort required to

change work products late in the product development cycle [Schach, 1999]. The

inclusion of this function stems from observations that changes are more costly to

make during later phases than in earlier phases. The factors for each phase can be

chosen from studies such as Boehm [Boehm, 1981] or from historical data about

the development team.

In addition for each trace, an external attribute representing the influence of

the source work product on the target work product is assigned by the developer.

The influence attribute accounts for the fact that target work products may have

multiple sources, where each source may have a different influence on the tar-

get. The attribute value should be selected from a set of predefined levels for the

development project.

3.2.3 WoRM

WoRM is composed of the two models, WIM and RIM . Figure 3.1 shows the

relationship between the two models, where the work products in common are

those requirements that are to be changed.

WIM represents the elements of a software development project that are to be

used for impact analysis. In the graph-based model, work products are the nodes, or

vertices, and the traces are represented directed edges between the nodes. Functions

are defined for each attribute to associate the work product or trace attribute with

the assigned level. In Section 3.2.4 we formally define WIM.

RIM contains information on the requirement changes that are the focus for the

analysis. It is also graph based, with requirement changes represented as nodes and
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directed edges represent traces from requirement changes to affected requirements.

A function associates each edge with the assigned severity of the change. Section

3.2.5 contains the formal definition for RIM.

3.2.4 WIM

WIM is defined as:

WIM = hNodes, Traces, i, c, e, pi (3.1)

where:

• Nodes represents the set of work products produced during product devel-
opment.

• Traces represents the set of edges representing requirement traces from
source work products to target work products. It is a binary relation on

Nodes: Traces ⊆ Nodes×Nodes.
• The influence function i is defined as i : Traces → InfluenceSet. It is the

degree of influence that a source work product has on subsequent target work

products.

The InfluenceSet is a set of influence levels. For example, if two levels of

influence are desired then InfluenceSet = {strong,weak} could be selected
as the candidate levels. The labels strong and weak represent numeric values;

thus the InfluenceSet ⊆ <.
• The complexity function c is defined as c : Nodes → ComplexitySet. It is

the estimated complexity of the work product.

Like the InfluenceSet, the ComplexitySet is a set of complexity levels,

where ComplexitySet ⊆ <.
• The effort function e is defined as e : Nodes → <. It is the development
effort, in person-hours, required to create the work product. Any variability
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between the productivity of developers should be managed by normalizing

this value.

• The phase cost function p is defined as p : Nodes → PhaseSet. It maps

a work product to a factor associated with each phase. The PhaseSet is

dependent on the phases used by a development team, e.g. {Requirements,
Analysis, Design, Implementation, SystemTest}.

3.2.5 RIM

RIM is defined as:

RIM = hChangeSet,RequirementNodes, ChangeTraces, ii (3.2)

where:

• ChangeSet is the set of requirement changes.
• RequirementNodes represents the set of work products in WIM that are

requirement work products.

• ChangeTraces is the set of edges linking a requirement change to the associ-
ated node representing a requirement work product. It is a binary relation on

ChangeSet andNodes: ChangeTraces ⊆ ChangeSet×RequirementNodes.
• The function i is defined as i : ChangeTraces → InfluenceSet. It is the

degree of influence that the requirement change has on the changed require-

ment.

3.2.6 Definitions

The following definitions are used in TIAM:

Definition 3.1. The weight w(n) of a node, or work product, is defined as:
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w(n) = e(n) · c(n) · p(n)

where n ∈ Nodes

and e(n), c(n), p(n) are defined in WIM (3.3)

Definition 3.2. The normalized influence of an edge, or trace, is defined as:

i0({a, b}) = i({a, b})P
T i({c, b})

where {a, b} ∈ Traces ∪ ChangeTraces

and T = {c|{c, b} ∈ Traces ∪ ChangeTraces}. (3.4)

Definition 3.3. The work product impact metric, wpImpact, is defined as:

wpImpact(a) = w(a) +
X
U

(i0({a, b}) · wpImpact(b))

where U = {b|{a, b} ∈ Traces} (3.5)

Definition 3.4. The requirement change impact metric, reqImpact(a), is

defined as:

reqImpact(a) =
X
S

(i0({a, b}) · wpImpact(b)),

where S = {b|{a, b} ∈ ChangeTraces}. (3.6)

3.3 WoRM Example

We provide a straight forward example of WIM using Figure 3.2. In WIM :

Nodes = {Req A, Req F, Design B, Design C, Source J, Source K, Source L}
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FIGURE 3.2. Product development diagram

Traces = {{Req A, Design B}, {Req A, Design C}, {Req F, Design C}, {Design
B, Source J}, {Design C, Source J}, {Design C, Source K}, {Design C, Source L}}
Trace influence attribute information is assigned as given in Table 3.1, and work

product attribute information is assigned as given in Table 3.2.

TABLE 3.1. Trace Influence Attributes
Trace: {a, b} Influence: i({a, b})
{Req A, Design B} average
{Req A, Design C} average
{Req F, Design C} strong
{Design B, Source J} average
{Design C, Source J} weak
{Design C, Source K} strong
{Design C, Source L} average

Assume two changes, Change 1 and Change 2, which are changes to Req A and

Req F, respectively. The new development diagram is given in Figure 3.3. The

resulting RIM consists of:

ChangeSet = {Change 1,Change 2}
RequirementNodes = {Req A, Req F}
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TABLE 3.2. Work product Attributes

Work product: a Complexity: c(a) Effort: e(a) Phase: p(a)
Req A medium 6 requirements
Req F medium 8 requirements
Design B medium 4 design
Design C high 15 design
Source J low 5 implementation
Source K high 21 implementation
Source L medium 7 implementation

ChangeTraces = {{Change 1, Req A}, {Change 2, Req F}}
The change trace influence attribute information is shown in Table 3.3.

TABLE 3.3. Requirement Influence Attribute

ChangeTrace: {a, b} Influence: i({a, b})
{Change 1, Req A} weak
{Change 2, Req F} average
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Req A

average
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Req F

strong

Change
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Change
2
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FIGURE 3.3. Product development diagram showing requirement change influences
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3.4 Summary

We formally defined the WIM and RIM as the models that encapsulate the

information required for the impact analysis and together form WoRM. We also

defined basic formulas that are a part of TIAM. We describe TIAM in Chapter 4.
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Chapter 4
A Methodology for Requirement Change
Impact Analysis

4.1 Introduction

TIAM evaluates a set of requirement changes. The methodology is applied during

the stage of planning the incorporation of a set of requirement changes into a

version of a software product under development. The information provided by this

methodology predicts the effects that modifications to the established requirements

may have on work that has already been completed.

4.2 Overview

TIAM utilizes a multistep approach to impact analysis. The first step uses re-

quirements traceability to find the predicted impact set of work products. With

the attribute information from the traces and work products, an impact metric

is computed for each requirement change. The requirement changes are grouped

into classes of similar estimated impact using the technique of fuzzy compatibility

classes. These classes are ordered with respect to increasing impact, providing sets

of low to high impact requirement changes. With this information, management

then evaluates the risk of implementing each requirement change dependent on the

value of each requirement change to the overall success of the product.

The requirement change impact metric predicts the effect of the implementing

a change on existing completed work products. This impact metric is computed

using the attribute information of the predicted impact set of work products and

the trace influence attribute. The requirement change impact metric is a fuzzy

metric. It is computed from attribute levels assigned by the developers. Since the

assignment for the levels of complexity and influence attributes are likely to vary
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from developer to developer, the use of fuzzy techniques provide a mechanism to

incorporate such differences. The impact metrics for a set of requirement changes

are used to group requirement changes into fuzzy compatibility classes according

to the differences in the impact metric. These classes are ranked according to the

mean of the impact metrics in the class. This ordering prioritizes the classes by the

impact that the changes may have on completed work, from low impact to high

impact when ordered by ascending values of the mean of the class.

4.3 Assumptions

This methodology and its associated models are based on the following assump-

tions:

• Functional requirements of the product are traceable.
• Forward from requirements traceability is available.

• All work products (requirements, design documents, source code modules,
documentation, and test cases) are available. All development work products

should be current.

• Developers assign attribute levels for the trace link influence attribute and
work product complexity attribute.

• Product is not monolithic in design or implementation, that is, the prod-
uct is designed and implemented in modules. Preferably the project should

utilize an object-oriented development paradigm, since good object-oriented

development tends to maximize the independence of the modules.

4.4 TIAM Definition

TIAM is shown graphically in Figure 4.1 and algorithmically in Algorithm 4.1. The

input for TIAM is a WoRM, composed of a WIM and the associated RIM. Outputs

of the methodology are sets of potentially impacted work products for each change
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and the ordered compatibility classes of requirement changes. Each requirement

change is associated with a set of potentially impacted work products for that

change labeled PIi, where i is the requirement change. PPI, is a collection of all the

sets of potentially impacted work products for each requirement change; therefore

for every i ∈ ChangeSet, the corresponding PIi ∈ PPI. The compatibility classes
are collected in the list CCI where each compatibility class CIj ∈ CCI is the jth

class in the list. The computation of the impact metrics for a set of changes gives

a vector V , where vi is the impact metric for change i ∈ ChangeSet.
Algorithm 4.1 TIAM
Input: aWoRM, an instance of WoRM

α, degree of similarity within a compatibility class
Output: PPI, sets of potentially impacted work products for each change

CCI, a list of ordered compatibility classes of requirement changes.

1: V ← ∅
2: PPI ← ∅
{Traverse the model for each change.}

3: for each requirement change a, such that a ∈ ChangeSet do
4: va ← RequirementImpactTraversal(aWoRM,PPI, a)
5: Add va to V
6: end for
{Determine maximal compatibility classes.}

7: CompatibilityClasses(V,α, CCI)
{Order compatibility classes by increasing impact.}

8: OrderClasses(CCI, V )

4.4.1 Traversal

The first step in TIAM is the traversal of the set of potentially impacted work

products and the computation of the requirement impact metric for each require-

ment change. This step is done via a depth first traversal of WIM following the

traces.
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Algorithm 4.2 implements the computation of Equation 3.6 and begins the col-

lection of potentially impacted work products with the impacted requirements. The

algorithm is invoked once for each requirement change, a. The set of potentially

impacted work products for each change, PIa, is added to the overall collection

of potentially impacted work products sets, PPI. All impacted requirements are

found by following the change traces from the requirement change. Each impacted

requirement is added to PIa. The requirement change impact metric, reqImpact,

is the summation of the impact to each requirement affected by the requirement

change. The impact for each requirement is the product of the normalized influ-

ence of the requirement change trace and the work product impact metric for each

requirement.

Algorithm 4.2 RequirementImpactTraversal
Input: aWoRM, an instance of WoRM

PPI a set of potential impacted work products sets
a, a requirement change

Output: PPI
reqImpact : <

1: PIa ← ∅
2: Add PIa to PPI
3: reqImpact← 0
4: for each b such that {a, b} ∈ ChangeTraces do
5: add b to PIa
6: reqImpact← reqImpact+

i0({a, b})· WorkProductImpactTraversal(aWoRM,PIa, b)
7: end for
8: return reqImpact

The impact to work products from Equation 3.5 is implemented by Algorithm

4.3 which also collects the remaining potentially impacted work products. When

invoked, the algorithm initializes a local work product impact metric to the weight

of the work product. If there are any work products influenced by this work prod-
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uct, as determined by the traces, the algorithm adds the traced work product to

the set of potentially impacted work products, PIa, and performs a summation of

the impact to each traced work product added to the local work product impact

metric. The impact for each traced work product is the product of the normalized

influence of the trace and the returned value of a recursive call to the algorithm

with the traced work product. If a traced work product has been reached before,

the impact to the traced work product is the product of the normalized influence

of the trace and the weight of the traced work product. The local work product

impact metric is returned to the instance of the calling algorithm for use in its

calculations.

Algorithm 4.3 WorkProductImpactTraversal
Input: aWoRM, an instance of WoRM

PIa, a set of potential impacted work products
b, a work product

Output: PIa
wpImpactV alue : <

1: wpImpact← w(b)
2: for each c such that {b, c} ∈ Traces do
3: if c /∈ PIa then
4: add c to PIa
5: wpImpact← wpImpact+

i0({b, c})· WorkProductImpactTraversal(aWoRM,PIa, c)
6: else
7: wpImpactV alue← wpImpact+ i0({b, c})· w(c)
8: end if
9: end for
10: return wpImpact

4.4.2 Similarity

The second step in TIAM is the grouping of changes as fuzzy compatibility classes.

Each change in a compatibility class has a predicted impact similar to the other
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changes in the same class. CCI is the list of compatibility classes with each com-

patibility class CIi ∈ CCI, the ith class in the list.
We define the fuzzy compatibility relation R, given in Equation 4.1, to find

classes of requirement changes that have a similar degree of impact. The relation

is based on the distance between the impact metrics [Klir and Yuan, 1995].

R(vi, vj) = 1− δ(| vi − vj |),

letting δ =
1

m
, where m is the largest value in V. (4.1)

The resulting relationship matrix is used to find compatibility classes of require-

ment changes based on a specific α. As the value of α increases, the resulting classes

are more refined. The value of α creates the α-cut of the set of requirement changes,

that is the classes of changes that are related at least by the value of α. One way

of finding the compatibility classes is to use a graph theory approach where each

change is a vertex and two vertices, a and b, are adjacent if R(a, b) >= α. Each

clique formed in the resulting graph represents a compatibility class. The cliques

can be found by visual inspection or algorithmically. The nodes for each clique i

form a class CIi that is added to CCI. With this approach of finding the classes,

algorithms for finding cliques in a graph cannot be solved in deterministic polyno-

mial time [Aho et al., 1974; Horowitz and Sahni, 1978]. Generally, algorithms that

cannot be solved in deterministic polynomial time cannot be solved for large sizes

of problems but may be solved for small problem sizes in reasonable time or space.

However, we can find the compatibility classes in polynomial time by normalizing

the impact metrics in the interval of [0,1] and finding the impact metrics that are

within a specified distance from each other. The distance is 1−α, for the selected

value of α. Algorithm 4.4 implements this approach. This algorithm is bounded by
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two nested loops, lines 10 through 17, which compare the distance between values,

making the algorithm’s upper bound complexity O(n2).

Algorithm 4.4 CompatibilityClasses
Input: V , a list of requirement impact metric values

α, degree of similarity within a compatibility class
Output: V , a list of requirement impact metric values

CCI, list of compatibility classes of requirement changes

1: V 0 ← ∅
2: CCI ← ∅
3: m←Max(V )
4: d← 1− α
5: for each v ∈ V do
6: add v/m to V 0

7: end for
8: Sort V 0, creating mapping P , such that Pi is the change associated with v0i
9: previousClass← ∅
10: for i = 1 to |V 0| do
11: currentClass← ∅
12: add Pi to currentClass
13: for j = i+ 1 to |V 0| do
14: if v0j − v0i < d then
15: add Pj to currentClass
16: end if
17: end for
18: if currentClass ( previousClass then
19: add currentClass to CCI
20: previousClass = currentClass
21: end if
22: end for

4.4.3 Ordering

The third step in TIAM is the ordering of the compatibility classes from lowest to

highest predicted impact. We rank the classes by sorting the list CCI in ascending

order by the mean of the impact metrics associated with each change in a class.

When Algorithm 4.4 is used, then the CI’s in CCI are already in the proper

order. If the fuzzy compatibility relation R is computed and the compatibility
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classes found by visual inspection of the resulting graph, Algorithm 4.5 can be

used to rank the classes.

Algorithm 4.5 OrderClasses
Input: CCI, list of compatibility classes of requirement changes

V , a list of requirement impact metric values
Output: CCI, list of ordered compatibility classes of requirement changes

1: for each CI ∈ CCI do
2: compute average of impact metrics for changes in CI
3: end for
4: Sort each CI in CCI in ascending order of its average impact

4.5 Methodology Example

We use the trace and work product example from Chapter 3 to show an application

of the methodology. A third change, Change 3, and additional work products are

added to the example to elaborate the grouping of changes. In this example we

associate the following values with attribute levels:

• InfluenceSet = {strong = 1, average = 0.6, weak = 0.3}
• ComplexitySet = {high = 1,medium = 0.6, low = 0.3}
• PhaseSet = {Requirements = 1, Design = 2, Implementation = 3}.
Figure 4.2 shows the computed weight of each work product beneath its label.

Each dependency trace is labeled with its normalized influence value.

The first step of TIAM is the traversal of the model for each requirement change

to find the potentially impacted work products and compute the requirement

change impact metric. RequirementImpactTraversal, Algorithm 4.2, is invoked.

PIChange1 is initialized to empty and reqImpact initialized to zero. Since there is a

change trace from Change 1 to Req A, Req A is added to PIChange1 and the com-

putation of reqImpact begins with a call to WorkProductImpactTraversal with

the parameters:
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aWorm = model instance passed to RequirementImpactTraversal

PIChange1 = {Req A}
b = Req A.

When returning from the initial call toWorkProductImpactTraversal, thewpImpact

value of 51.5625 is then returned to RequirementImpactTraversal which is then re-

turned to TIAM where vChange1 is set to 51.6.

Calls to RequirementImpactTraversal for Change 2 and for Change 3, return

71.7 and 65 respectively, producing V = {51.6, 71.7, 65} and PPI ={PIChange1,
PIChange2, PIChange3} where:
PIChange1 ={Req A, Design B, Design C, Source J, Source K, Source L}
PIChange2 ={Req F, Design C, Source J, Source K, Source L}
PIChange3 ={Req G, Design H, Source I, Source M}.
The second step of TIAM can be completed by Algorithm 4.4 or by computing

the relationship matrix. In order to demonstrate the grouping of changes into

classes that have a similar impact metric we use the following relationship matrix

computed from V :

R(vi, vj) = 1− δ(| vi − vj |) =


1 0.72 0.81

0.72 1 0.91

0.81 0.91 1


The value of α chosen for determining the fuzzy compatibility classes is the

degree of similarity of the impact metrics for changes in a compatibility class. The

determination of the appropriate α-cut is dependant on the parameters within the

development organization. From the relationship matrix, it can be seen that for α

= 0.7, we can make no distinction between the changes because all belong to the

same maximal compatibility class. For this example, we select an α = 0.9. Only
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Change 2 and Change 3 have a similarity greater than 0.9, R(vChange2, vChange3) =

0.92. This α-cut partitions the changes into two compatibility classes, one with

Change 2 and Change 3 and the other with Change 1. The compatibility classes

produced are CCI = {CI1, CI2}, where:
CI1 ={Change 1}
CI2 ={Change 2, Change 3}.
The final step of TIAM is ordering the compatibility classes in increasing impact.

Algorithm 4.5, OrderClasses, specifies the classes be sorted in increasing order

according to the average of the impact metrics in each class. In this example, the

compatibility classes in CCI are already in the appropriate order with the changes

in CI2 expected to have a greater impact than the change in CI1.

4.6 Summary

TIAM is a predictive impact analysis method. For a set of requirement changes, the

potentially impacted work products are identified, and an impact metric is com-

puted. Next, the requirement changes are grouped into classes where the changes

in each class have a similar predicted impact. Finally, the classes of changes are or-

dered in increasing impact. The application of TIAM characterizes changes based

on the level of impact of a change.

56



Chapter 5
Experimental Results

5.1 Project Description

In this chapter, we present a case study in which a graduate level software engi-

neering course project served as the case study. Students in the Computer Science

graduate programs have the ability to program in a high level programming lan-

guage and have taken undergraduate courses in data structures, operating systems,

and programming languages. The class was divided into six teams, with each team

consisting of three or four members. The same project and problem description

were assigned to each team. The project was a web-enabled time tracking and

billing system for a hypothetical software company. The problem description is

provided in Appendix A. At the completion of the project, each team was required

to submit a project portfolio with the following items:

• requirement work products document used to specify the functionality of the
system

• all analysis work products
• all design work products
• source code module listing
• test plans and test work products
• user and operator instructions and guides
• work product attribute table
• work product traceability matrix
• requirement change impact analysis reports
• any instructions necessary to install, configure, and run the system.
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During the implementation phase of development, six requirement changes were

assigned to the teams. The requirement changes are given in Appendix B. Trace

data and work product attribute data were collected from the teams to perform pre-

dictive impact analysis with TIAM. The teams were instructed to track the effort

in person-hours expended while making these changes to existing work products.

An impact analysis document for each change was required as part of the final

documentation for the project. The impact analysis report for each change lists

the requirements that were affected and the severity of the change, in terms of the

influence attribute levels. It also lists the amount of effort that was required to

make the changes to existing work products.

For each team, the predicted impact for each change was computed by applying

TIAM, based on the requirement trace information and work product attribute

data reported by the two teams. The actual impact for each change is the effort

required to make the change as reported by the teams. We used the fuzzy com-

patibility relation R, Equation 4.1, to define compatibility classes on the actual

data in the same manner as we use it for the predicted impact method analysis.

The purpose was to determine the degree of similarity between the actual impact

classes and the predicted impact classes.

5.2 Case Study Details

Attribute levels for work product complexity were chosen from the set: {low,
nominal, high}. For the requirement traces, the influence attribute levels were
chosen from the set: {weak, average, strong}. The effort attribute for each work
product, recorded by the team as each work product was being developed, is the

number of person-hours expended in developing the work product. Work products
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were reported from the requirements phase, design phase, and implementation

phase of development at the time changes were introduced.

The six requirement changes are identified as a, b, c, d, e, and f . Each change was

written as a change to an requirement that was expected to be developed from the

original problem description.

To perform the computation of the impact metric, the initial values for the

attribute levels were selected to represent a balanced effect across the range of

levels. The complexity attribute levels were {low = 1, nominal = 2, high = 3}.
The trace influence attribute levels selected were {weak = 0.3, average = 0.6,

strong = 0.9}. Since the project was constrained to a semester the attribute levels
for phase were selected to be {requirements = 1, design = 1, implementation =
2}.

5.3 Case Study Data

Table 5.1 summarizes the number of work products by the phase in which the work

product was created. The granularity of work products appears to differ markedly

between the groups. Since each team had completed the design phase when the

changes were given to them, we expected that each team would have completed

similar designs and have identified the same magnitude of design work products.

Data was collected from each of the six teams at the conclusion of the project;

however only two teams provided data in enough detail to be useful for analysis.

Two teams provided incomplete impact analysis information, while the remaining

two provided no reports. Upon inspection of the project portfolios of the four teams

that did not provide enough impact data, the work products of these team were

also too coarsely defined for effective analysis.
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TABLE 5.1. Summary of Work Reported by Each Team When Changes Introduced

Number of Team
1 2 3 4 5 6

Requirement work products 23 70 9 4 32 10
Design work products 34 28 5 4 8 4
Implementation work products 27 15 7 4 0 6
Number of traces 249 1101 32 32 210 83
Person-hours reported 140 114.5 72 41 54 94.5

We present the results of teams 1 and 2 with the impact analysis and the appli-

cation of the impact prediction methodology, using the six changes given to each

team. The actual impact to the each team project depends on the work that the

team had completed at that point.

5.3.1 Results from Team 1

For team 1, two of the changes did not impact any existing work products because

the changes were implemented in work products that were not created at the time

the changes were introduced. Only one work product was changed that was not

included in the set of potentially impacted work products. Table 5.2 provides

a summary of the impact to the project for team 1 by showing the number of

predicted impact work products and number of actually impacted work products.

TABLE 5.2. Summary of Predicted and Actual Modified Work Products

Work Products Change
a b c d e f

Changed and predicted impacted 0 8 1 2 4 0
Unchanged and predicted not impacted 48 39 45 43 50 45
Changed and predicted not impacted 0 0 1 0 0 0
Unchanged and predicted impacted 36 37 37 39 30 39

The actual impact for the set of changes, {a, b, c, d, e, f}, is V = {0, 6, 2, 2, 4, 0},
where va = 0, vb = 6,. . . , vf = 0. V represents the actual time required to make
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the changes. Applying the compatibility relation R on V , as defined in Equation

4.1, yields the following matrix:

R(vi, vj) = 1− δ(| vi − vj |) =



1 0 .67 .67 .33 1

0 1 .33 .33 .67 0

.67 .33 1 1 .67 .67

.67 .33 1 1 .67 .67

.33 .67 .67 .67 1 .33

1 0 .67 .67 .33 1


From this matrix, we obtain the following maximal compatibility classes:

α = 0.3 : {{a, f, c, d, e}, {c, d, e, b}}
α = 0.5 : {{a, f, c, d}, {c, d, e}, {e, b}}
α = 0.7 : {{a, f}, {c, d}, {e}, {b}}
We show these classes graphically in Figure 5.1.

a

vd

vc

vf

vbvev

α = 0.7

Increasing impact

Classes at
α = 0.3

α = 0.5

FIGURE 5.1. Compatibility classes for team 1, actual impact

We used TIAM to produce the sets of potentially impacted work products and

the impact metric for each change. The number of potentially impacted work prod-
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ucts for each change is summarized in Table 5.2. With one exception, the impacted

work products were included in the sets of potentially impacted work products.

The number of predicted not impacted work products that would not be impacted

for each change was at least 50% of the total number of work products. As ex-

pected there were a number of work products that were predicted to be impacted

that were not changed.

The predicted impact metrics for this set of changes are given by V̂ , where V̂ =

{9.04, 39, 9.82, 17.08, 20.84, 16.8}. The computation of the predicted compatibility
relationship R̂ on V̂ gives the following matrix and maximal compatibility classes:

R̂(v̂i, v̂j) = 1− δ(| v̂i − v̂j |) =



1 .23 .98 .79 .7 .8

.23 1 .25 .44 .53 .43

.98 .25 1 .81 .72 .82

.79 .44 .81 1 .9 .99

.7 .53 .72 .9 1 .9

.8 .43 .82 .99 .9 1


α = 0.2 : {{a, c, d, f, e, b}}
α = 0.24 : {{a, c, d, f, e}, {c, d, f, e, b}}
α = 0.5 : {{a, c, d, f, e}, {e, b}}
α = 0.6 : {{a, c, d, f, e}, {b}}
α = 0.75 : {{a, c, d, f}, {d, f, e}, {b}}
α = 0.9 : {{a, c}, {d, f, e}, {b}}
In Figure 5.2, we show selected maximal compatibility classes for selected values

of α graphically.

At an α = 0.5 for the actual impact, we have the classes, CCI = {{a, f, c, d},
{c, d, e}, {e, b}}. For the predicted impact for α= 0.5, the classes CCI = {{a, c, d, f,
e}, {e, b}} where found. The method predicted changes b and e would have a higher
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FIGURE 5.2. Compatibility classes for team 1, predicted impact

impact than the other changes. This prediction concurs with the actual results,

even to predicting that change b would have the greatest impact of all changes.

Other changes were predicted to have a lower impact and to be similar in degree.

The method predicted that impact from changes a and f were similar to changes c

and d. The actual impact analysis showed these two sets of changes were not sim-

ilar, since no effort was reported to be required for changes a and f . If any work

products are potentially impacted, our method will compute a nonzero impact

metric.

5.3.2 Results from Team 2

We next applied TIAM to the data from Team 2. Two of the changes were reported

as having no affect on requirements as specified by the team. As a consequence the

methodology could not be applied to these two changes. In one of these cases, the

design of the product allowed for the change without modification of the product.

As expected there were a number of work products that were predicted to be

impacted that were not changed. Table 5.3 provides a summary of the predicted

impacted work products and the actually impacted work products to the project.
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TABLE 5.3. Summary of Predicted and Actual Modified Work Products

Work Products Change
a b c d e f

Changed and predicted impacted 14 12 - 11 - 10
Unchanged and predicted not impacted 80 90 - 86 - 85
Changed and predicted not impacted 5 4 - 4 - 4
Unchanged and predicted impacted 20 13 - 18 - 20

TIAM produced the sets of potentially impacted work products and the impact

metric for each change. The number of potentially impacted work products for

each change is summarized in Table 5.3. Though four to five work products were

changed that were not predicted to be impacted for each change, the majority of

changed work products were predicted to be impacted. For each change, least 65%

or more of the total work products were unchanged and predicted not be impacted.

Again, there were a number of work products that were predicted to be impacted

that were not changed.

For team 2, the actual impact for changes {a, b, d, f} was V = {3, 2, 3, 4}, pro-
ducing the compatibility matrix and maximal compatibility classes:

R(vi, vj) = 1− δ(| vi − vj |) =



1 .75 1 .75

.75 1 .75 .5

1 .75 1 .75

.75 .5 .75 1


α = 0.5 : {{b, a, d, f}}
α = 0.7 : {{b, a, d}, {a, d, f}}
α = 0.8 : {{b}, {a, d}, {f}}
Selected classes are shown in Figure 5.3.
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FIGURE 5.3. Compatibility classes for team 2, actual impact

This team reported two changes, c and e, as not affecting any requirements. We

could not compute an impact metric for these changes. So we predict using the

changes {a, b, d, f}. The predicted impact metrics for this set of changes is given
by V̂ , where V̂ = {5.98, 4.48, 5.58, 3.8}. The computation of the predicted compat-
ibility relationship R̂ on V̂ gives the following matrix and maximal compatibility

classes:

R̂(v̂i, v̂j) = 1− δ(| v̂i − v̂j |) =



1 .75 .93 .63

.75 1 .82 .89

.93 .82 1 .7

.64 .89 .7 1


α = 0.6 : {{f, b, d, a}}
α = 0.7 : {{f, b, d}, {b, d, a}}
α = 0.8 : {{f, b}, {b, d}, {d, a}}
α = 0.9 : {{f}, {b}, {d, a}}
We show selected maximal compatibility classes in Figure 5.4.
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FIGURE 5.4. Compatibility classes for team 2, predicted impact

For team 2, at α = 0.5 the actual and predicted impact for changes a, b, d, and

f are similar. In this set of changes, no change seems to have a significantly higher

impact than the other changes at this selected value. The method also found that

changes a and d are similar at a high value of α, for the actual and predicted

analysis.

5.4 Summary

The methodology results for team 1 identified two changes that were similar and

had a predicted higher impact than the other changes. The actual impact agrees

with the predicted impact for these changes. The remaining changes where pre-

dicted to be similar, where the actual impact for two of those changes was not

similar and was less than the predicted impact. The actually changed work prod-

ucts were included in the sets of potentially impacted work products, except for

one work product. The methodology results from team 2 found that all the changes

would have a similar impact. The actual impact for these changes was also found

to be similar. The majority of actually modified work products was included in the

predicted to be modified sets of work products.
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This case study demonstrates that the methodology creates classes of require-

ment changes. These classes are similar to classes generated from the actual im-

pact to the projects. Our observation is that an α-cut of 0.5 is appropriate for the

methodology, though we expect this to vary depending on the development group.

The selection of α-cuts above α = 0.6 did not yield useful predictive classes. This

behavior is expected since the method is dependant on the impact metric which is

fuzzy. The sets of potentially impacted work products effectively reduces the num-

ber of work products that would need to be considered for further impact analysis,

with respect to the total number of work products.

In summary, the experimental results support the predictive ability of TIAM.

We compared the application of TIAM on two software development projects to

the actual impact on each project, and found that methodology has predictive

value for finding classes of similar changes.
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Chapter 6
Methodology Validation

6.1 Introduction

In order to validate the methodology, we view the compatibility classes as graphs

and use a technique for comparing graphs for similarity. We then describe the

similarity of the graphs from the actual impact classes with the graphs of the

predicted impact classes. Finally, we examine the use of the attributes to better

facilitate predictions.

6.2 Results

We represent the results of TIAM as a graph. Each change is a node in the graph,

and each node is connected by an edge if the value of the fuzzy compatibility

relation value is equal to or greater than the value of the selected α-cut. The

maximal compatibility classes of the requirement changes are represented by the

cliques formed in the representative graph, where a clique is a subset of nodes of a

graph that form a complete graph [Bondy and Murty, 1976]. The graph accurately

represents the compatibility class but the information as to which class was of

greater impact is lost. We must consider this ordering separately from comparing

the similarity of graphs.

6.2.1 Distance Between Graphs

When applying a metric to determine the similarity between two graphs, we re-

fer to the distance between two graphs. If the distance between two graphs is 0,

then an isomorphism exists between the two graphs. For an isomorphism to ex-

ist, there must be a one-to-one correspondence between the vertices and edges

68



such that the adjacencies of the vertices are preserved. Recent work on distance

between graphs is given by [Chartrand et al., 1998; Goddard and Swart, 1996;

Papadopoulos and Manolopoulos, 1999]. Two categories of distance measures iden-

tified in [Papadopoulos and Manolopoulos, 1999] are feature-based distances and

cost-based distances. Feature-based distances extract a set of features from the

structural representation as a n-d vector. Cost-based distances between two graphs

measures the number of modifications required to transform one graph into an iso-

morphism of the other graph.

We apply a cost-based distance in the comparisons, primarily because in this

application the vertices are identical in the graphs. The modifications, or trans-

form operations are adding an edge, making two vertices adjacent, or deleting an

edge and removing the adjacency property between two edges. Such transform

operations are also referred to as vertex updates. The cost-base metric is straight-

forward to calculate by assigning a cost for the addition of an edge and a cost for

the deletion of an edge. For our distance measures we assign a unit cost to each

operation, weighting both operations equally.

Recall in Section 2.6, a graph, G, is defined as the tuple hV (G), E(G),ψgi,
where V (G) is a non-empty set of vertices, E(G) is a set of edges, and an incidence

function ψg. We define a distance between two graphs if, and only if, the vertices

are the same, V (G1) = V (G2). An edge deletion and edge insertion have a unit cost

and therefore we formally define the distance between two graphs, Dist(G1, G2),

as the number of edges not equivalent in each graph. Equivalence between edges

is given in Definition 6.1, and distance between graphs in Definition 6.2.

Definition 6.1. For two graphs, G1 and G2, edges e1 ∈ V (G1) and e2 ∈ V (G2)
are equal if and only if ψG1(e1) = ψG2(e2).
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FIGURE 6.1. Team 1 actual impact graph

Definition 6.2. For two graphs, G1 and G2, the distance between G1 and G2 is

Dist(G1, G2) = |E(G1) ∪E(G2)|− |E(G1) ∩E(G2)|.

6.3 Comparison of Case Study Results

In the case study, the compatibility classes formed at an α-cut of 0.50 provide the

most favorable results for this case study. We use this α-cut for the compatibility

classes that we compare in this section.

6.3.1 Team 1 Results

The graph that represents the compatibility classes for the actual impact for team

1 is shown in Figure 6.1. The graph of predicted compatibility classes is shown

in Figure 6.2. To transform the predicted graph to the actual graph requires two

edge deletion operations, removing (a, e) and (e, f). The distance measure between

these two graphs is therefore 2.

The minimum distance between two graphs with six vertices is 0, if the graphs

are isomorphic. The maximum distance between two such graphs is 15, the number

of edges in a complete graph with 6 vertices, which would mean the two graphs

had no adjacency properties in common. Therefore a distance of 2 indicates that

the graphs are similar but not isomorphic to each other.
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FIGURE 6.2. Team 1 predicted impact graph
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FIGURE 6.3. Team 2 actual and predicted impact graph

6.3.2 Team 2 Results

For team 2, the requirement changes of c and e are not included in the predicted

requirement changes set, so we do not include these changes in the graph for the

actual requirement changes. Figure 6.3 shows the graph representing the actual

compatibility classes. It also represents the predicted impact classes. The distance

between these two graphs is 0.

6.3.3 Conclusion

The distance between the actual classes graph and the predicted classes graph for

team 1 is 2 and for team 2 is 0, demonstrating that the predicted classes are similar

in the case of team 1 to the actual classes and the actual classes are the same as
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FIGURE 6.4. Team 1 number of work products graph

the predicted classes for the case of team 2. The similarity of the ordering was

shown in Chapter 5.

6.4 Evaluation Using Selected Attributes

To investigate the effectiveness of the complete model, we examine several alter-

native approaches to calculating the requirement change impact metric. We used

an α-cut of 0.50 to determine the compatibility classes in these examples.

6.4.1 Number of Work Products

Most impact analysis approaches using requirements tracing identify the poten-

tially impacted work products. We calculate the requirement change impact metric

for this example to be the number of potentially impacted work products found

using requirements tracing. We do this to investigate if the number of potentially

impacted work products of a change is an indication of the its degree of impact.

Figure 6.4 shows the graph for team 1 and Figure 6.5 shows the graph for team 2.

To transform the graph in Figure 6.4 to the actual compatibility classes requires

6 edge additions, {(a, c), (a, f), (a, d), (b, e), (c, e), (d, e)}, and 4 edge deletions,
{(a, e), (b, c), (b, f), (b, d)}. The total distance between the graphs for team 1 is

10, which we consider shows the graphs markedly dissimilar. The case of team 2

requires two edge additions, {(a, b), (a, d)}, for the graph shown in Figure 6.5 to
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FIGURE 6.5. Team 2 number of work products graph

transform the graph to the actual compatibility classes. This transform makes the

distance 2 for the graphs for team 2, a comparison in which the maximum possible

distance is 6 for any two graphs with 4 nodes. Thus, predicting the impact using

the number of potentially impacted work products is less accurate than the method

we define in TIAM.

6.4.2 Effort and Complexity

As another alternative, we redefine the weight of a node as the product of the effort

and the complexity attribute value, and the requirement change impact metric as

the summation of the weights of the work products in the potentially impacted

work product set. The graph for team one is the same as the graph derived from

the number of work products as shown in Figure 6.4. The graph for team 2 is

shown in Figure 6.6.

Again, the distance between the graphs for team 1 is 10. For team 2, the trans-

form requires a single edge addition, (a, f), making the distance 1.

6.4.3 Conclusions

In the case of team 1, the distance is large between these graphs and the actual

impact graphs. The distance between the graphs here for team 2 are not as different

but the maximum distance is smaller. In the graphs for team 1, b and e were not in
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FIGURE 6.6. Team 2 effort and complexity graph

the same class as in the actual impact classes. Thus neither the use of the number

of work products nor the use of only effort and complexity improve the results over

the method defined in TIAM.

6.5 Conclusion

Table 6.1 shows the distances between the graphs using the approach in TIAM. The

distance between the predicted impact classes graphs and the actual impact classes

graph shows that TIAM produces classes similar to the actual classes. Simplifying

the impact metric to represent only the number of potentially impacted work prod-

ucts or the effort and complexity of potentially impacted work products, produced

graphs that were a greater distance from the actual impact classes graphs than

the requirement change impact metric defined by TIAM produced. This analysis

shows that the inclusion of the influence of requirement traces in TIAM yields a

better prediction of the impact that a change may have on a software development

project.
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TABLE 6.1. Summary of Distances

Attributes Used to Generate Graphs Distances
Team 1 Team 2

Complete impact metric 2 0
Number of work products 10 2
Effort and complexity of work products 10 1
Maximum possible distance 15 6

The distance metric between the graph representations of actual and predictive

classes shows that the graphs are similar. We have also shown that the requirement

trace influence in the model is key to the effectiveness of TIAM.
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Chapter 7
Summary and Conclusions

The objective of this research was to develop a predictive impact analysis technique

that identifies classes of requirements changes that have similar impact levels. To

achieve this objective, we defined a requirements traceability methodology known

as TIAM. We defined WoRM as the model to represent the information required

for the methodology, where WoRM consists of the models WIM and RIM. WIM

provides a representation of work products and the traces between work prod-

ucts in a software product. RIM provides information about requirement changes

introduced to a software development project.

We defined a requirement change impact metric to predict the impact that a re-

quirement change will have on the resources for a project. The requirement change

impact metric is based on traces between work products and attributes of work

products and traces, information that is contained in WoRM.

We defined algorithms that evaluate the impact of a set of requirement changes,

resulting in a set of classes of requirement changes ordered from low to high impact.

The results are classes of changes based on their similarity. The similarity between

requirement changes is based on a similarity between their respective requirement

change impact metrics. We also identify the potentially impacted work products

by using traceability.

Using subjects from a software engineering course, we experimentally applied

TIAM to the course project to predict the impact of a set of requirement changes

for two teams. The teams provided the data that was encapsulated in WoRM, the
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data on the number of person hours required to implement each change, and the

work products modified for each change.

The potentially impacted work products predicted by TIAM were compared

to the actually impacted work products. For one team, only one work product

was predicted not to be modified that was actually modified. For the other team,

three out of every four work products modified was predicted to be modified. In

each case, TIAM identified at least half the work products in the project as work

products that were unchanged and predicted not impacted.

Using the actual impact in person hours for each change, we created classes of

changes with similar actual impact. These classes were compared to classes gener-

ated by TIAM. The actual and predicted classes, when represented as graphs, are

shown to be similar using a graph distance measure. The highest impact require-

ment changes were also discovered by using TIAM.

This research builds on previous research in impact analysis using requirement

tracing combined with an approach developed from research using fuzzy logic with

respect to requirements satisfaction. Table 7.1, which summarizes trace based

impact analysis techniques, extends Table 2.1 by including TIAM. Pfleeger and

Bohner’s trace based complexity measure provides a quality comparison between

the current version of a product and a proposed changed version of the product

[Pleeger and Bohner, 1990; Bohner, 1991]. TIAM uses similar traces to determine

a quantity comparison between a set proposed changes to be used for resource

planning. When a change is made to a work product, Barros, et al, use traces to

determine what work products may be impacted. The analysis is performed inter-

actively to enable a developer to completely implement a change [Barros et al.,

1995]. TIAM’s impact analysis is intended for planning rather than ensuring that

changes are thoroughly implemented. Lindvall and Sandahl used traceability based

77



TABLE 7.1. Comparison of Impact Analysis Approaches including TIAM

Approach Types of Links Results
Pfleeger & Bohner Requirement Traces Complexity Measures
Barros, et al Dependency and Re-

quirement Traces
Interactive identificaton of po-
tentially impacted work prod-
ucts

Lindvall & Sandahl System and Domain
Knowledge

Potentially impacted classes

Bianchi, et al Structural, Naming,
and Cognitive

Finer grain work products pro-
duce better impact analysis, but
at a higher effort

TIAM Requirement Traces Classes of changes with similar
impact

on the domain knowledge of the system developers [Lindvall and Sandahl, 1998a;

Lindvall and Sandahl, 1998b]. Only source code modules were included in the im-

pact analysis. Traceability based on developers knowledge is limited by the avail-

ability and memory of the developer, but TIAM’s models provide a way of codifying

this knowledge and including more than source code work products. Bianchi, et al.,

included derived traces based the internal structure of work products to accurately

identify the impacted work products of a change [Bianchi et al., 2000]. TIAM pro-

vides a measure of the degree of impact that a change may have in addition to

identifying potentially impacted work products. TIAM presents the results of im-

pact analysis in a manner that clearly distinguishes between the impact of changes.

These features increase the information available for decision making about which

changes should be incorporated in a software product.

7.1 Contributions

This research makes the following contributions to the state of knowledge of impact

analysis and change management:

1. TIAM provides a method to predict which requirement changes present the

greatest risks to the project. These changes are ideal candidates for more
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detailed impact analysis techniques. The inclusion of changes with higher

risk should call for greater care and management when implemented in the

existing project. This approach to using requirement tracing yields more use-

ful information than the identification of potentially impacted work products

alone.

2. TIAM adds another dimension to impact analysis techniques by determining

not only the impact of a change but also providing a comparison of severity

among a set of changes. Completing a software development project and

shipping a product on schedule and within budget is a complex process.

Frequently, decisions on what to include or what not to include in a version

of a product must be made with respect to the available resources. This

methodology provides a tool to aid in this decision process.

3. TIAM provides an impact analysis technique that is useful during the de-

velopment of a software product. Since TIAM does not rely on the internal

structure of work products, impact analysis may be conducted while many

work products are incomplete or not yet created.

4. TIAM can be used for impact analysis for maintenance activities in products

provided sufficient requirements traceability information was recorded during

development. Failure to update design and other work products when changes

are made to source code creates a source of difficulty when performing future

maintenance. TIAM accounts for the impact to all work products and thus

provides useful analysis for maintenance activities.

5. TIAM provides new models to represent requirements changes and work

products information.
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6. The application of TIAM is independent of any specific software life cycle

model. TIAM is especially suitable as a tool for the risk analysis component

of the spiral life cycle model.

TIAM benefits managers by providing assistance for resource planning. The

impact metric for each change is an indication of the effort required to make changes

in existing work products. For a given change, if the value of the requirement change

impact metric is high enough, a determination should be made as to whether

the change can be made without affecting the schedule. If further analysis shows

that the schedule will be affected, a determination as to how much to change

the schedule should be done. If the change is significant enough to invalidate the

previous effort estimate to implement the requirement, then the management team

should perform another planning exercise for the modified requirement to account

for work products yet to be implemented.

For changes that are critical to the success of the product, the methodology can

be used to determine which changes require the expense of more detailed impact

analysis by revealing those critical changes contained within the higher impact

classes. When more detailed impact analysis is required for changes that are in the

higher impact classes, TIAM can reduce the expense of the overall impact analysis.

The predicted impacted work products should encompass the set of the actually

impacted work products, narrowing the number of work products that may require

further impacted analysis. In a software development project, it is a more efficient

use of the time of domain and system experts to examine the predicted higher

impact work products and predicted severe requirement changes than examining

all requested requirement changes for potential impact. This method provides for

more focused impact analysis by developers and allow the developers to generate

better analysis.
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If there is flexibility in accepting changes or resources do not allow all changes

to be included, management must decide which changes will be included in the

product. If the requirement changes have different priorities or values to the client

or users, TIAM can be used in conjunction with a process that incorporates the

value of including a change to the satisfaction of the product. Project management

can use this process to facilitate the determination of requirement changes are

candidates not to be included in the current version. To determine whether or not

a non-critical change should be included in the current release, management should

determine the value of including the change on the overall success of the product

in the time frame for the current and following releases. High impact changes with

a low value could be candidates for deferring to a following release. Including low

impact changes of high value in the current release could increase satisfaction with

the product in a cost effective manner.

7.2 Future Work

Next steps will be further experimentation with TIAM in diverse environments.

The computation of the impact metric could be refined with the availability of more

actual impact data cases. The choice of attribute levels and associated values are

likely dependent on specifics of a development organization; thus, experimentation

with historical data from an organization is desirable.

One application of TIAM’s use of requirement traces is to extend the process to

identify interdependent changes for a product. If a set of changes has a significant

number of potentially impacted work products in common, effort could be reduced

by implementing the set of changes at the same time.

The requirement change impact metric in TIAM potentially could be used to the

evaluate the risk of volatile requirements. Volatile requirements are requirements
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that are likely to change. There is a risk to the product if such requirements have

a strong influence on the design or implementation of the product or on significant

interdependent work products. High risk volatile requirements may indicate a need

to revisit design and architecture of the product, and they may represent a risk

to the stability of the product. TIAM could be extended to determine the risk

of volatile requirements to the software product. Design of a product without

accounting for such requirements represents a risk to the entire product.
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Appendix A

Case Study Problem Description

Fourteenth-Floor Software (FFS) is a medium-sized computer software and con-

sulting company with expertise in object-oriented software development and de-

tailed domain knowledge of the telecommunications industry. FFS assists major

companies with application development by providing an experienced software

development team on a contract basis. FFS also markets parts of its suite of devel-

opment tools and specialized applications. Currently, FFS has over five hundred

employees and twenty active clients.

FFS charges clients for the time and expenses that its employees spend providing

services to the client. FFS also has several internal projects that employees work

on which will become products that the company sells. Employees responsible for

marketing and selling FFS’s products are eligible to earn a commission on the sales

they make.

FFS wishes to have a computer system that allows employees to report the hours

worked, expenses, and to whom the time and expenses should be charged. Charges

are made to accounts that represent a client contract, an internal project, or one of

five pseudo-accounts (Training, Sales, Holiday, Vacation, and Leave). The system

should gather and produce information to print payroll checks and related reports,

billing information for clients, and reports for management on charges to accounts.

Currently all employees and contractors that are charging time and expenses to

an account fill out a weekly time and expense sheet. Processing the sheets takes

too much time and creates delays in billing. Paychecks are one pay period behind.
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FFS wants to print paychecks one day after the pay period closes and mail invoices

to clients as early as possible.

There are four levels of employees in FFS: junior, associate, senior, and partner.

Junior level employees are the only hourly paid (nonexempt) employees. All other

employees are salaried (exempt). Independent contractors may also be used by the

company. Contractors are also paid hourly. Employees in sales earn a commission

on sales. These employees may choose one of two methods of having their pay

calculated:

1. Monthly base pay + commissions, where commissions are capped at 50% of

base pay.

2. 50% of monthly base pay + commissions.

Time is charged to accounts for outside clients or internal projects. Time may

also be charged to accounts for training and sales. Account types of Holiday and

of Leave should also exist. Employees are paid for holidays but time charged to

leave should not be paid to hourly paid employees and should be deducted from

salaried employees at a rate of (yearly salary/2000) per hour, expect for employees

that are at the partner level.

Junior level employees and contractors are required to provide actual work times

and accounts to be charged for that time. Junior level employees and contractors

must charge 100% of their time. These entries must be approved by their manager

before processing in payroll. All other employees are required to enter the account

and the number of hours and/or expenses to be charged for that account. Entries

should immediately be validated for details such as number of hours worked and

vacation time taken before the entry is accepted into the system.
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Billing Rate
per hour

Commission
Rate

Vacation
Days per Year

Pay Period

Junior $50 N/A 10 biweekly
Associate $100 10% 15 monthly
Senior $200 12.5% 20 monthly
Partner $300 15% N/A monthly
Contractor 125% of ac-

tual pay rate
N/A N/A biweekly

A limit of 96 hours can be worked in one week. Vacation can be taken in four

hour blocks (half days). Note: it would not make sense to have more than 40 hours

of vacation or leave in one week.

FFS usually designates twelve holidays per year. Holidays may be taken at any-

time. An employee beginning employment by March 31 is eligible for nine holidays.

An employee beginning employment after March 31 but by June 30 is eligible for

six holidays. An employee beginning employment after June 30 but by Septem-

ber 31 is eligible for three holidays. Any employee beginning employment after

September 31 is ineligible for holidays that year.

The following table gives information on each employee level and contractors.

Accounting will manage the system and is not particular about the user interface

for the functions that they will use. Employees and contractors should have a web

enabled front end for making their time and expense entries. All of the company’s

systems reside on a private intranet and should be relatively secure. Reasonable

security should be provided to ensure that each individual uses the system only

for entering their own information. Additionally an audit trail is required to trace

employee and contractor entries and manager approval.

Accounts for outside clients and internal projects may be in one of three states:

active, closed, or limited. Active accounts may be charged any amount. Closed

accounts may not have any charges applied to it. A limited account has a ceiling
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Benefit Package Employee
Monthly Cost

Employee Bi-
weekly Cost

Employer
Monthly Contri-
bution

A $125 $57.50 $135
B $167 $76.80 $135
C $108 $49.60 $135

on the monthly cost or hours that may be applied to the account. The invoice for

a client account that is limited may not exceed the ceiling. If the ceiling amounts

are surpassed on any account, a detailed exception report for management should

be automatically generated during normal account processing.

Employees or contractors who leave the company must remain in the system

until year end tax forms are printed. After that point their information should be

archived in some manner for future reference.

Employees may choose one of three benefit packages or no benefit packages at all.

The company also offers a retirement plan in which the employee may deposit up to

8% of base pay with the company matching up to 4%. This plan is also optional and

employees must have been employed for at least one year to enroll. The premiums

for the benefit packages are deducted before taxes, where the retirement plan is

deducted after taxes.

Taxes that are deducted from employee’s pay are Federal income taxes, Social

Security, and Medicare. FFS is based in a state and municipality that does not

have income tax; however, this may not always be the case. The Social Security

tax is 6.2% and Medicare tax is 1.45%. Only the first $76,200 of income per year is

subject to the Social Security tax. Federal income tax is withheld according to the

attached information from IRS Publication 15, Circular E, Employer’s Tax Guide.

Note: Contractors are not employees and are not eligible for any holidays, ben-

efits, retirement plans, and have no taxes withheld from pay.
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The system should be flexible in allowing for changes in taxes and benefit plans.

At year end, all employee information that is shown in tax forms should be saved

along with total retirement plan deposits for each employee.

Accounting will need to create and update information on employees, contrac-

tors, and accounts for internal projects and outside client contracts. Accounting

also will enter sales figures for employees making sales.

Paychecks for all hourly paid employees and contractors are to be printed at the

end of every bi-week ( two week) period. All other paychecks are to be printed at

the end of each month.

Each paycheck should include an attachment with the employee’s name and

social security number, and listing current and year-to-date totals for the following:

gross pay, itemized deductions (taxes, benefits, etc.), total deductions, and net pay.

Monthly invoices are to be generated for each outside client account. The client

is billed for the time charged to the associated account and incurred expenses.

A detailed invoice listing time and expenses by person should be available at the

client’s request. Every client account should have a contact person to whom the

invoice is sent.

Management wants a monthly report totaling hours and cost by internal project.

A detailed report for each project listing by person should be available if requested.

A monthly report for management should be printed with totals for social se-

curity taxes withheld, medicare taxes withheld, federal income tax withheld, em-

ployee contribution and employer contribution for: benefit package A, benefit pack-

age B, benefit package C, and retirement plan.

Yearly, tax forms for employees and contractors will need to be printed. For em-

ployees, W-2 reports are needed for each employee listing employee name, address,

and social security number, total taxable pay, total social security tax withheld,
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total medicare tax withheld, and total federal income tax withheld. Contractors re-

quire a 1099 form which lists the contractor name, address, social security number,

and total amount paid.

Social security numbers may not be used to reference employees or contractors.

Everyone who works for FFS is issued a serial number when hired. The serial

number is a letter followed by five digits. The serial number is used to identify

workers in computer systems such as security badge readers and current accounting

systems.
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Appendix B

Case Study Requirement Changes

Due to changing business needs, the following changes are to be made to the system

requested by Fourteenth-Floor Software. All work products (requirements, design,

etc.) are required to be updated to reflect these changes.

Change A: Contractors are to be paid weekly.

Change B: Junior level employees may work as sales trainees, earning 5% com-

mission up to 80 times their hourly rate per month. This is the only com-

mission option for junior level employees.

Change C: Client’s accounts may be set up to be sent detailed invoices automat-

ically if the client so chooses.

Change D: The number of vacation days for each employee is based on level or

length of service (time employed ), whichever is greater.

Years of Service Vacation Days
<5 10

5 to <10 15
10 or more 20

Change E: A manager will have another manager designated to approve hourly

workers’ time/expense entries if he or she is not available.

Change F: For accounts that are limited, the detailed exception report should

be generated if the amounts reach 90% of the ceiling.
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