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By integrating object–oriented requirements analysis with OO design, the Object–Oriented Software
Development Method (OOSD) allows a practical focus on the objects of a problem throughout.  OOSD
requirements analysis clearly represents problem requirements and leads smoothly to design, creating a
single consistent abstract model with strong validation and verification, which is easy to maintain, and
closely follows the “real world”.

INTRODUCTION
OOSD seeks to identify the objects in a problem, to understand the structural and behavioral modularity
and properties of each object, and to recognize objects which are members of a common class and so share
modularity, behavior, and properties, in a single consistent abstract model.  In requirements analysis, this
model identifies the “what”: the required objects, classes, functions, behavior, and properties of the prob-
lem.  In design, this model determines the “how”: it is refined into an architecture for software compo-
nents with a smooth transition to code.  The model is developed and viewed through graphic and textual
representations which provide ready communication.

OOSD formally defines the properties of objects, describing the system as an object.  The system is then
refined into its component objects.  Classes are methodically identified by generating them from objects in
the system.  A particularly thorough verification procedure establishes that the system is correctly imple-
mented and achieves the required properties.  Objects are treated uniformly, including the system object.
By performing  the same essential activities in analysis, preliminary design, and detailed design, an
unusually consistent model is built, which closely follows the “real world”, can be tested early, and is easy
to modify and re–use.

OOSD can be applied in a variety of development models including evolutionary, spiral, waterfall, proto-
typing, and market–driven (Royce 1970; Boehm 1981; Boehm 1988; Gilb 1988; Sodhi 1991; Summerville
1992). In this paper I will use the waterfall model, which is relatively linear and suitable for written
exposition.  I will discuss OOSD requirements analysis, with an overview of how OOSD is applied to
design.

OOSD REQUIREMENTS ANALYSIS
Our goal during requirements analysis is to understand “what” the customer “needs” us to build.  We
build a model of the application and validate that our model will actually meet the customer’s needs.
OOSD recognizes the system itself as an object.

In OOSD requirements analysis, four activities are applied to the system object to create the model of the
application.  Graphic and textual representations produced by these activities are used to validate the
model.  The four activities are

1) Object–Interaction Specification
2) Object–Class Specification
3) Behavior Specification
4) Property Specification

These activities can be performed in almost any order once an initial Object–Interaction Specification has
been done (and will be discussed in a different order below).  An iterative approach is recommended,
since the performance of each activity generally suggests refinements in the others.
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Two different strategies for requirements analysis have been found to be useful.  When starting a new
development (“green–field development”), we begin by identifying the objects and classes that are
required in the context of the system object.  When reworking an existing system (re–engineering a sys-
tem, or restructuring an organization or business), we apply an approach described by Ken Orr (Orr 1981)
as “Middle–Up–Down”, where we describe the objects and classes that are components of the current sys-
tem or organization (“middle”), then abstract away the details of the implementation and define the
boundary of the new system or organization (“up”), then design the new components (“down”).

In this paper I will show how OOSD is used in a new development, analyzing a temperature–monitoring

problem given in an early book by Booch (Booch 1986).1

Temperature M onitoring Problem

There exists a collection of ten independent sensors that continually monitor temperatures in an office
building.  Initially, all of the sensors are disabled.  We may explicitly enable or disable a particular sensor,
and we may also force its status to be recorded.  Furthermore, we may set the lower and upper limits of a
given sensor.  In the event that any of the enabled sensors register an out–of–limits value, the system must
immediately post an alarm condition.  Additionally, it must request and record the status of all the sensors
every 15 minutes (set by a timer hardware interrupt).  If we do not get a response from any sensor within 5
seconds after this time we must assume that the sensor is broken and immediately post another alarm.
Asynchronously, we may get a user command to enable or disable a specific sensor, set the temperature
limits, or force the status of a given sensor to be recorded.  In any case, failure of the user interface must
not affect the monitoring of any currently enabled sensors.

The sensors are located in the lobby, main office, warehouse, stock room, terminal room, library, com-
puter room, lounge, loading dock, and cleaning room.  They use memory–mapped I/O ports to write inte-
ger values to the ten 16–bit words starting at address 16#0100#; each value when multiplied by the accu-
racy of the sensor (0.5°C) results in the external temperature value.  When a fault is detected or a sensor
goes out of limits, the system will turn on a warning light, which the user must manually clear.  To acti-
vate a warning light, the system must place all 1’s (16 bits) in the memory–mapped I/O ports: 16#0010#
— address of fault warning; 16#0011# to 16#001A# — address of out–of–limits warning.

Object–Interaction Specification
Object–Interaction Specification identifies the objects which are required to communicate with our system,
and the interactions between our system and these objects, using an Object–Interaction Diagram and a
Dictionary.  Object–Interaction Diagrams (OID) describe a set of objects and the interactions between the
objects (see Figure 1).  The OID is the fundamental representation of the model of the application; the
top–level OID, called a context diagram or external view, describes the system object in the context of
those objects, outside the system, which the system object interacts with.  The Dictionary lists every part of
the system model, e.g. objects, classes, interactions, giving the purpose, requirements, and any other use-
ful information.

Object–Interaction Diagram
In an OID (see Figure 1), active objects are shown by round–cornered rectangles (e.g. Temperature_
Monitor_System), passive objects are shown by square–cornered rectangles (see Figure 13), and external

                                                       
1 Although a later edition of the book has appeared, the problem as stated in the edition I cite has certain useful

features for this paper.  The discussion below will find various inadequacies in the problem statement.  This
process is typical of software development; it is nearly inevitable, given human limitations, and should not be
seen as a reflection on Booch.



Requirements Analysis with OOSD Page 3

© 1993, Edward Colbert 12/21/98

objects are shown by trapezoids (e.g.
User).  “Shadowing” (e.g.
Physical_Sensor) indicates multiple
objects of the same class which are
distinguished by some form of map-
ping, e.g. an address.  The names of
objects should be nouns.

An interaction describes a request by
one object to another that the
requested object perform one of its
operations, along with any objects or
data that are exchanged as part of the
interaction.  Interactions are shown in
an OID by arrow–shaped arcs con-
necting the objects that interact.  Interface interactions, i.e. with an external object, are shown by lines
with a dash–dot–dot pattern.  Often their implementation involves hardware and has special properties.

The arc is labeled with the name of the operation being requested, which should be a verb or verb phrase.2

An operation is requested by the object shown at the tail of the arrow in the interaction, performed by
the object shown at the head of the arrow.

                                                       
2 If this convention is not strictly enforced, people accustomed to Structured Analysis tend to treat requests as data

flows, and people accustomed to languages using a message and method scheme, like SmallTalk (Goldberg,
1989; Wegner, 1990), tend to treat requests as messages.  OOSD views “methods” as ways of implementing
operations, and “messages” as ways of implementing requests.

OOSD considers an object active if it displays independent
motive power; if not, passive.  A passive object can only per-
form work, and can only change its state, while performing
one of its operations in response to a request by another
object, ultimately under the motivation of an active object.
An active object need not exercise its motive power (for
example, a human being sometimes acts in response to
requests or commands).  A printer demon would be repre-
sented as an active object, even though it does not perform
any work until it receives a print request from another object;
when the demon receives the request, the demon releases the
other object and performs the actual printing on its own
power.  External objects are objects outside the scope of the
system to be implemented.

Figure 1: Context Object–Int eract ion Diag ram for the Temperature_M onitor_System
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The arc is annotated to distinguish four kinds of requests, according to the way the request is issued
(Figure 2).  In a synchronous request, the two objects will remain synchronized throughout the interaction

(like a telephone conversation).3  In an asynchronous request, the requesting object issues its request, but
does not wait to see if the request is received or the requested operation performed (like mailing a letter).
Timed and balking requests are essentially synchronous, but the requesting object can “give up”, i.e. stop
waiting.  In a timed request, the requesting
object gives up if the performing object does
not start performing the requested operation in
a specified period of time.  In a balking request,
the requesting object gives up if the performing
object does not start performing the requested
operation immediately.  In this paper I take up
only synchronous requests.  The other types are
typically introduced during the refinement of

analysis and design.4

Four kinds of arrows show exchanges of objects
or information during an interaction.  The arrowhead on the couple indicates the direction of flow.  (See
Figure 3.)  OOSD distinguishes data flows, grant object flows, give object flows, and error  flows.  For
example, in Figure 1 the Execute interaction between the User object and the Temperature_Monitor_
System object consists of the Execute operation request; 4 data flows, namely Command, Sensor_Name,
Limits, and Sensor_Log; no object flows; and 2 error flows, namely Invalid_Command and Bad_Data.
The Execute operation is requested by the User object, and performed by the Temperature_Monitor_
System object.

By data flow, OOSD means an transfer of information between two communicating objects about one or
more objects.  By object flow, OOSD means that one of the communicating objects actually hands over a
measure of control of some object, either
granting access only while retaining ultimate
control (grant object) or giving over control
entirely (give object).  An error  flow is a kind
of data flow reporting that an object failed to
perform a requested operation, with the reason.
The error flow is given a name that describes
the failure.  Other data flows, and object flows,
are given the names of the data or objects to be
transferred, from the perspective of the per-
forming object.

In all OOSD diagrams, question marks signal an issue that needs to be discussed with the customer (or
system engineer).  The issue is described in the Dictionary entry for the entity marked with a question.

                                                       
3 If either object is internally concurrent, then possibly only a component is actually synchronized with the other

object; if both are internally concurrent, only components of each may be synchronized.  This will be clarified by
the behavior descriptions of each object.

4 OOSD users sometimes call a synchronous request “simple”, because its semantics are equivalent to a message
in SmallTalk, a member function call in C++, or a subprogram or entry call in Ada.  An asynchronous request
needs some form of mailbox.

Figure 2: Types of Request
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Identifying Objects and Interactions
Many object–oriented methods which identify objects during requirements analysis perform what Shlaer
& Mellor call an “object identification blitz” (Booch 1991; Coad and Yourdon 1991; Rumbaugh, Blaha et
al. 1991; Shlaer and Mellor 1992).  In OOSD requirements analysis, we consider the system as an object,
and we only need to identify the other objects which are either required to communicate with the system,
or are exchanged (or about which data is exchanged) during interactions.  For example, in Figure 1 the
Temperature_Monitor_System is our system object, User, Hardware_Timer, Physical_Sensor(s), Sensor_
Limit_Light(s), and Sensor_Fault_Light are all objects which communicate with the system; and Com-
mand, Sensor_Name, Lower_Limit, Upper_Limit, Sensor_Log, and Value are all objects about which data
is exchanged during interactions.

We should be able to identify the interactions between the system object and external objects from what is
said, in whatever oral or written statements we are given, about communications between objects.  For
example, we were given the requirement “when a fault is detected or a sensor goes out of limits, the sys-
tem will turn on a warning light.”  We represented this as the two interactions where the Temperature_
Monitor_System requests the Turn_On operation of a Sensor_Limit_Light or of the Sensor_Fault_Light.
Interactions between external objects are by definition generally outside our problem.

In deciding what external objects and interactions to represent, we need to balance two concerns.  We
want a complete and consistent model, and if our model lacks these qualities it will probably not be cor-
rect (see “Product of Requirements” section below.  We also want to represent exactly what the customer
specified, so we can discuss our model with the customer.  In OOSD, we strive for these potentially con-
tradictory goals by adding objects or interactions to those in the problem statement as needed for com-
pleteness, flagging new or inconsistent objects and interactions with question marks, and annotating our
questions in Dictionary entries.

For example, our problem statement said “the system will turn on a warning light which the user must
manually clear.”  Plainly the Temperature_Monitor_System should request the Turn_On operations of the
Sensor_Limit_Light(s) and the Sensor_Fault_Light, but should it request the Turn_Off operation?  Turn-
ing off (clearing) the lights was not one of the user commands given in the problem statement.  Also, we
are told of multiple Sensor_Limit_Light(s), but only 1 Sensor_Fault_Light.  In our model (Figure 1) we
included 2 interactions showing the Temperature_Monitor_System requesting the Turn_Off operation of
both Sensor_Limit_Light(s) and the Sensor_Fault_Light.  We noted the 2 interactions and the Sensor_
Fault_Light with question marks, and described our question in the dictionary entries for the Turn_Off
interactions and the Sensor_Fault_Light.

In representing external objects and interactions, any given diagram should be kept at a consistent level of
abstraction, from the perspective of our system.  Usually the problem statement will be found to contain
one or more design decisions expressed as requirements.  For example, our statement says “the system
must post an alarm condition” when a sensor registers an out–of–limits value, but this is really a design
decision implementing a requirement that the system warn the user when a sensor is out of limits.  Fur-
thermore, we are given a requirement that “posting an alarm condition” be implemented by “turning on a
warning light”, and that “turning on a warning light” be implemented by “placing all 1’s (16 bits) in a
memory–mapped I/O port”.  While we must represent what the customer specified, we must also deter-
mine the level of abstraction we currently need to work at, and stick with it so long as we are there.  If
some other level of abstraction appears useful, it should be given another diagram, and possibly deferred
to a later activity.

In Figure 1, we have represented Sensor_Limit_Light and the Sensor_Fault_Light as external objects, and
have shown the Turn_On and Turn_Off interactions.  To be consistent, we should show a user–interface
device rather than the User, and we should show how the device interacts with the system.  However,
since no particular device was required, this ideally should be deferred to design.  Figure 4 is a view of the
system at a more uniform level of abstraction.  We have abstracted away the lights, and represented the
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Warn_Sensor_Out_Of_Limits and Warn_Sensor_Faulty interactions between the Temperature_Monitor_
System and the User.  At the other extreme, we could draw another diagram showing the memory–
mapped I/O ports instead of the lights as external objects, and representing Write interactions between the
Temperature_Monitor_System and the ports.  In this diagram, we would also represent the sensor ports,
which were specified in the problem statement, and ports needed to support the user–interface device,
which were not specified.  Such a diagram would obscure “what” we expect to accomplish, e.g. warning
the user that a sensor is faulty or out of limits, while clarifying “how” we expect to accomplish it, e.g. by
writing to certain ports.

As a general rule, I recommend drawing both a “Problem View” of the context of the system, e.g. Figure
4, as a requirements–analysis activity, and drawing a “System Engineering View”, e.g. a refined version
of Figure 1, as a design activity.  The Problem View better illustrates the communications that must occur,
while the System Engineering View better illustrates the devices, such as the lights in our example, used
to implement the required communications.  In addition, because the Problem View is more abstract, it
leaves us more flexible to meet system–engineering design changes, and is more re–useable and portable.

In most cases the requester and the performer of an interaction, and thus its direction, are obvious from
the problem statement.  Sometimes the direction is not obvious, especially during design, or during
requirements analysis if the context of the system has not been well defined.  We then select the direction
that seems most natural, and study the impact of the choice.  Usually setting one direction instead of the
other will simplify the behavior of the two objects, or otherwise promote software engineering goals.  For
example, one direction may make polling unnecessary, improving the efficiency of one or both of the
objects, or ease adding operations to one of the objects, making it more adaptable.

Objects which only request services from the system are not as critical to identify as the services they
request.  The system does not care what object makes the request; as long as the proper information or
objects are supplied, the system will perform the service.  However, showing the objects that issue requests

Figure 4: Context Object–Int eract ion Diag ram for the Temperature_M onitor_System  —
Problem View
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is useful for talking to the customer or system
engineers, and facilitates communication
among reviewers and developers.

Behavior Specification
The Object–Interaction Diagram gives a
static view of the behavior of each object in
the system.  Object–Interaction Diagrams
show which objects interact, but not under
what conditions.  For example, Figure 1 does
not show what conditions cause Tempera-
ture_Monitor_System to request Turn_On
from Sensor_Fault_Light.

The Behavior Specification activity identifies
the dynamic behavior of the system object.
OOSD uses statecharts (Figures 5 and 6),
derived from Harel (Harel 1987; Harel 1988),
to represent behavior; however, other graphic
representations could be used.

Harel Statecharts are based on traditional state transition diagrams which describe “behavior in ways that
are clear and realistic, and at the same time formal and rigorous, sufficiently so to be amenable to detailed
computerized simulation [or other analysis techniques]” (Harel 1987).  The behavior of a system is
described in terms of states, stimuli which cause changes of state, and any actions that are performed in
response to a stimulus in addition to the change of state.  Harel extended traditional state transition
diagrams by formalizing the representation of hierarchical states (“depth”), i.e. states nested within other
states, simultaneous (“orthogonal”) behavior, and communication between simultaneous behaviors.  As
Harel puts it (Harel 1987):

In a nutshell, one can say:
statecharts = state–diagrams + depth + orthogonality + broadcast–communication

OOSD Statecharts integrate Harel’s basic notation with the object–oriented concepts of objects, classes,
and operations, and can be used to describe any object.

OOSD Statechart Notation
In an OOSD Statechart, a basic state is represented by round–cornered rectangles (e.g., Off and On in
Figure 5).  The label of a basic state contains the name of the state, and a description of any work which is
performed while in the state (except work that for accuracy must be shown by decomposing the state).  If
work is mentioned, its description is placed under a horizontal line.

A state may summarize more detailed behavior, in which case it is drawn with boldface lines when col-
lapsed, and normal lines when expanded (e.g., the On state in Figures 5 and 6).  A state may have sub-
states, shown by drawing their rectangles inside its rectangle.  A state may also be drawn with separate,

dashed rectangles to represent orthogonal components.5  A state (and any orthogonal component) may
contain substates, or orthogonal components, but not both.

                                                       
5 Harel draws dashed lines across the rectangle to show these components, but drawing the components as

separate parts, so they can be treated independently (such as by “selecting” them with drawing programs), makes
it easier to manipulate the diagram.

Figure 5: Top–l evel Behavior Diagram for the
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In Figure 6, we have expanded the On state of the Temperature_Monitor_System and all of its substates
and orthogonal components, illustrating how the system behaves when it is on.  The On state has three
orthogonal components, indicating that when the Temperature_Monitor_System is On, it simultaneously
exhibits Recording, Sensor_Management, and Command_Processing, and that Sensor_Management
simultaneously exhibits Value_Monitoring and Testing.  The “shadowing” on the orthogonal component
Sensor_Management indicates multiple occurrences of this behavior; the number of occurrences is part of
the dictionary entry for Sensor_Management.  Command_Processing consists of 3 states, Wait,
Wait_for_Acknowledge, and Record_Status.  Record_Status has 4 substates, Wait_for_Sensor, Sensor_
Responded, No_Response, and a termination state represented by a bull’s–eye.

Figure 6: Expanded Behavior Diag ram for the Temperature_M onitor_System
(External View)
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In representing behavior, we first note the state in which the behavior starts.  The diagram shows a solid
circle called the start or default marker.  A change–of–state arc points from the start marker to the start
state.  In Figure 5, Off is the start state.

A change of state, called a transition, is represented by an arc connecting the states.  Most changes of state
are conditional; the condition is described in a label on the arc.  If some work is to be performed along
with the change of state, the work is described in the label, below a horizontal line separating it from the
condition (even if there is no condition, the horizontal line is always shown).  Any action shown in the
label is performed, followed by any work of the state.  If a change is to occur by default, i.e. after complet-
ing any work of the state if no condition for another change is met, no condition is described.  In our
notation, an object remains in a state until some condition for change is met (including a default transi-
tion).  If for a particular state and condition, the result of the condition’s occurring will be a return to the
same state, OOSD represents this explicitly by drawing a “transition” that returns to the state it came
from.

In many cases, behavior ends in a state from which there can be no change.  Such a state is called a termi-
nation state and is represented by a bull’s–eye.  We chose to show a possible cycle from Off to On, instead
of showing a termination state, pending clarification of the requirements for turning the system on and
off.

Figure 5 shows that the system will change from Off to On when a Toggle Power request is received from
some other object, and when the request arrives, the system will initialize (its) components.  We have
placed question marks on the 2 transitions because the problem description did not specify how the system
is to be turned on or off, nor any requirements related to the often critical issues of initialization and
clean–up.

We consider that a condition for a change of state will be some event, or the result of some internal test,
or both.  We consider that an event is (a) the receipt of either a request from another object that the object
perform one of its operations, or a message from another orthogonal part, or (b) a time–out.  An internal
test may (a) test what state another orthogonal part is in, (b) test the value (state) of a parameter of an
operation, or (c) test an attribute of the object whose behavior we are representing.  An internal test is
shown in a label by brackets.

In Figure 6, each of the three transitions from Command_Processing.Wait to Command_
Processing.Wait_for_Acknowledge shows a change conditional on both an event and a test result, e.g., the
system will change when Execute is requested and the Command is Enable Sensor and the Sensor_Name
is known.

When a change leads to a state that has substates or orthogonal parts, we must show clearly which sub-
state is the current state, which we specify in three ways: (a) the transition can be directly attached to a
specific substate, (b) a default (start) state can be specified, (c) a state entrance indicator can be specified.

In Figure 5, transitions are drawn from start markers in each orthogonal component, which shows that
when changing to the On state, the Recording, Command_Processing, and Sensor_Management.Value_
Monitoring orthogonal components each start in their respective Wait substates, while Sensor_Manage-
ment.Testing starts in its Active substate.

When a change leads out of a state that has substates or orthogonal parts, there is a “change out of all
substates”.  In Figure 6, the transition from Sensor_Management.Testing.Active to Sensor_Management.
Testing.Active.Disable indicates that the system will change to the Disable state from the current substate
of the Active state when a Disable(Sensor_Name) message with the appropriate Sensor_Name is received.
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We consider that work consists of one or more actions,6 and that if more than one action is specified, they
are to be performed in the sequence stated.  We consider that an action is (a) a request that another object
perform one of its operations, (b) a message broadcast from the orthogonal component we are looking at
to others, or (c) an “informal description”, i.e. a relative abstraction that may later (possibly not until
design) need further refinement.  Bearing in mind that we want to be “amenable to detailed computerized
simulation”, it is still often convenient to include conditions and actions at a stage when we are aware of
them, but not yet prepared to describe them formally.  OOSD encloses these informal descriptions in
braces, e.g. {Initialize Components} in Figure 6.  Although we spoke of broadcast messages and informal
descriptions separately in describing actions just now, actually broadcast messages are by their nature
informal descriptions, and are thus enclosed in braces.

In Figure 7, the action Sensor_Fault_Light.Turn_On in the behavior Recording is a request for an opera-
tion.  The action {Broadcast Enable(Sensor_Name)} on the transition from On.Command_Process-
ing.Wait to On.Command_Processing.Wait_for_Acknowledge is a broadcast message (in this instance
received by Sensor_Management.Testing).  The action {Recording Status of All Sensors} in the
On.Recording.Recording_Status state is an informal description.

When a description of work is associated with a state that may later be expanded, the description summa-
rizes the work refined later in the orthogonal components or substates.  For example, the state
On.Recording.Recording_Status could be expanded to show the detailed behavior represented by the

description {Recording Status of All Sensors}.7

We may wish to abstract away whatever time some particular work may require.  We represent such work
on a transition.  In Figure 5 we have placed {Initialize.Components} on the transition between the Off and
On states; relative to the time we expect the system to be On, we consider that initializing components
takes zero time.  When we consider work as taking nonzero time, we associate the work with a state.
With these two notations for representing work, which show the abstraction of time in our behavior
description explicitly, the object we are examining is always in a defined state at any instant in time, not
“in transition”.

Note that, more specifically, we have treated initializing components in Figure 6 as taking zero time for
purposes of the current abstraction.  If we later want to expand the transition between Off and On to show
an intermediate state where the work of initializing components is performed, we can treat initializing
components as taking substantial time for purposes of that level of abstraction.

OOSD uses the specialized operation state and operation request state to show the precise timing of syn-

chronous communications (including “timed” and “balking”).8  Timing issues are not critical to our pres-
ent problem, so these states are only noted for completeness.

                                                       
6 OOSD does not preserve Harel’s distinction between work in states, which he calls activity, and work on

transitions, which he calls action.

7 In Harel’s nomenclature, work associated with the parent is “concurrent with” the work associated with the
substates, but OOSD omits this, because his orthogonal components already show concurrency.

8 In an operation state, represented by a hexagon, an object is performing the work immediately associated with
one of its operations.  The operation state is given the name of the operation (with the operation’s formal
parameter list, if appropriate).  The actions (or substates) of an operation state describe the work to performed
when the operation is requested.  The operation state is shorthand for the frequently occuring pattern state_name
/ {perform operation} which is then expanded to state_name / {do action_1}, {do action_2},... where action_1,
action_2,… describes perform operation in detail.  While the performing object is in the operation state, the
requesting object waits (assuming a synchronous communication); once the performing object leaves the
operation state, the requesting object is released.
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In many instances OOSD will allow two or more legal representations of behavior.  The user should con-
sider whether a particular  representation is more suitable for the purpose at hand.  Some representations
will be equivalent.

Behavior of the System Object
OOSD describes the behavior of the system object as well as the behavior of system components.  This
promotes uniformity, and guards against un–inspected assumptions about the design.  In requirements
analysis, we describe the behavior of the system object expected (required) by the customer independent of
the components that will be used to build it.  For example, Figures 5 and 6 describe the behavior of the
Temperature_Monitor_System.

We study the described system behavior, in whatever oral or written statements we are given, for the
interactions between the system object and external objects (how the system should respond to requests for
each of its operations, when and under what conditions it issues requests to external objects), and what
other work the system is expected to do.  We want a complete and consistent description of the way the
system object is expected to behave (see “Product of Requirements” section below).

As a general rule, I recommend starting the behavior description either with On and Off states, as in Fig-
ure 5, or with an Alive state, which is the start state, and a termination state (i.e. Dead), and then elaborat-
ing the On or Alive behavior.  Starting the behavior description at the On/Off (Alive/Dead) level protects

the developer from overlooking the requirements for start–up and shut–down.  How is the system created9

or activated?  What initialization must be performed?  How is the system destroyed or de–activated, and
what “clean up” must be done?  Once the system is created, can it be re–activated after it is de–activated?

Our problem statement did not describe the start up or shut down behavior of the Temperature_Monitor_
System, so for completeness we proposed (Figure 5) that the Temperature_Monitor_System is required to
accept a Toggle_Power operation request to switch from Off to On and vice versa, that the Temperature_
Monitor_System will initialize components when going On, and that some clean–up will be part of the
transition to Off.  We documented our questions on these points in the Dictionary.

Once we have established the expected start up and shut down, we next want to describe the system object
when it is On (Alive).  If it is to perform multiple simultaneous behavior, we need to represent the On
(Alive) state in corresponding orthogonal parts, and describe each.

As described in our problem statement, the Temperature_Monitor_System must “continually monitor
temperatures”, and post an alarm if “any of the enabled sensors register an out–of–limits value.”  It must
“record the status of the sensors every fifteen minutes (set by a timer hardware interrupt).”  The system
must also process user commands.  In Figure 6, we represented this simultaneous behavior by expanding
the On state into the three orthogonal parts Sensor_Management, Recording, and Command_Processing

                                                                                                                                                                    
In an operation request state, represented by an oval and named with the operation requested (i.e.,
object_name.operation_name with actual parameters, if appropriate), an object requests that another object
perform one of its operations.  The operation request state is shorthand for the frequently occurring pattern
state_name / object_name.operation_name (parameters...).  The object in this state waits for the named object to
accept and perform the specified operation.  There should be a default transition from the operation request state
describing what state the requesting object will change to when released by the performing object.  If the
operation request is timed, there should be a transition with a time–out to define how long the requesting object
will wait for the performing object to accept the request, and what state the requesting object will change to if
the time limit expires.

9 OOSD allows a distinction between creation or destruction on the one hand, which strictly speaking are
performed by an external object, and activation or de–activation on the other hand, which are performed by the
system object.
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respectively.  Since the problem description states that there are 10 sensors, we have shown multiple
occurrences of the Sensor_Management behavior.  We have further shown Value_Monitoring and Testing
as orthogonal parts of Sensor_Management.

In Figure 6, the orthogonal part Recording indicates that the Temperature_Monitor_System must periodi-
cally record the status of all sensors.  Recording shows that the system starts in a Wait state, and stays
there until receiving a request for the Mark_Time operation.  Upon receiving that request, the system
changes to the state Recording_Status, and performs the action {Record Status of All Sensors}.  Upon
completing this action, the system will return to Wait.  If the system Failed to Connect to Any Sensor, it
issues the request Turn_On to the Sensor_Fault_Light.  We defer until later the details of how the
Temperature_Monitor_System performs {Record Status of All Sensors}, which is thus shown in brackets;
we may for now treat this as a design decision.

The behavior diagram and object–interaction diagram (OID) belong to an integrated description of the
system.  The behavior diagram is not a separate model, but part of the model of the system object.  Every
interaction shown in the OID is reflected in the behavior diagram, and vice versa.  If the OID shows the
system object accepting a request to perform an operation, then the behavior diagram must show at least
one condition for state change, with the acceptance of the requested operation, and what the system does
in response.  If the OID shows the system object issuing a request to an external object, then the behavior
diagram must show at least one action where the request is issued.  Note that if the object (or its class) has
been re–used from another system, the behavior diagram may show the acceptance of a request that is not
shown as a request in the OID.

Comparing Figure 6 with its context OID (Figure 1), we can see that there is at least one condition for
state change for each request of the Temperature_Monitor_System shown.  We can also see that for each
request issued by Temperature_Monitor_System as shown in its context OID, there is at least one action
where the request is issued.  The behavior diagram shows that the Temperature_Monitor_System must
accept a request for its Toggle_Power operation in order to change between its On and Off states — which
we just noticed the need for, and added; there is yet no entry in the context–level OID for the
Temperature_Monitor_System showing the operation requested, so we must be sure to add this operation
here too, with its question marks.

Property Specification
The Object–Interaction Diagrams and the Statecharts show which objects interact and under what condi-
tions, but not how well.  For example, Figures 1 and 5–6 do not show how frequently the Temperature_
Monitor_System can (or is required to) accept the request for its Write operation, nor do they show how
easy the system is to use.  These “how well” issues belong to Property Specification.

The Property Specification activity defines the quality of an object in terms of operational characteristics
(“properties”).  During requirements analysis, we specify the required quality goals and resource con-

straints for the system object.10

Property Forms & Tables
Two textual representations are used: the Property Specification Form and the Property Summary Table
(Gilb 1988).  The Property Specification Form (see Figure 7) states the unit of measurement (“scale”) for
each property of an object (including the system object), how the property will be tested (“test”), the
minimum (“worst acceptable”) and desired (“plan”) measures to be met, known best (“record”) and past–
performance (“past”) measures, current (“now”) measure, notes, references, and questions.  The “test”
field should include any separate tests for different phases of the development life–cycle, or for different

                                                       
10 In the past called the “non–functional requirements”, perhaps an unfortunate name.
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conditions that may affect the object (e.g. wet roads affecting a car’s braking distance); likewise, “worst
acceptable”, “plan”, “record”, “past”, and “now” should include any special measures that depend on par-
ticular conditions.  If in filling out this form, or revising it in the process of development, we find a “worst
acceptable” which is greater than the “record” or “plan”, we thus discover a risk that a property will fail
its minimal or desired achievement.  Likewise, as we proceed we can watch the achievement of a property
by verifying from time to time that the “now” value is in the range defined by “worst acceptable” and
“plan”.

The Property Summary Table (Figure 8), which summarizes all properties of an object (including the sys-
tem object), helps analyze trade–offs of properties, risks of failing to achieve desirable or necessary com-
binations, and alternate designs (see “Product of Requirements” section).

Figure 7: Property Specification Form for Write  Frequency
Name: Write Frequency

Applies to: Temperature_Monitor_System.Write

Description: How often the Temperature_Monitor_System.Write operation can be proc-
essed by the Temperature_Monitor_System without loss of data.

Scale: Cycles/Second

Test: The operation will be initiated repeatedly for 1 hour period at a fixed number
of cycles/second, starting at the plan level, decreasing by 1 cycle / second,
until each interaction during the hour succeeds.  The interval at which all
interactions succeed, defines the value for this operation.

Worst Acceptable: 50 cycles/second

Plan: 70 cycles/second

Record:

Past:

Now:

Note: Sample Numbers.  The plan level of average interaction is designed as a 40%
safety margin (e.g. hardware change).

References:

Questions

Figure 8: Property Su mmary Table for Temperature_M onitor_System
Name Applies to Scale Worst

Acceptable
Plan Record Past Now

Write Fre-
quency

Temperature_
Monitor_
System.Write

cycles/
second

50 70 ? ?

Ease–of–Use.
Time–to–
Learn

Temperature_
Monitor_
System

weeks 2
(qualified)

1
(qualified)

? ?

Ease–of–Use.
Productivity

Temperature_
Monitor_
System

operations
/ hour

30 60 ? ?

Ease–of–Use.
Error–Rate

Temperature_
Monitor_
System

errors /
hour

3 1 ? ?
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Defining the System Object’s Properties
Formally defining the properties of an object (including its operations and interactions) is a characteristic
feature of OOSD absent in most methods.  In requirements analysis, we  define the properties required of
the system object.  We look for quality goals such as those related to reliability, performance, useability,
availability, safety, adaptability, security, and for constraints on resources such as equipment, time,
people, and money.  For each property identified, we fill out a Property Specification form (Figure 7).

Often properties are incompletely described in the documentation we are given.  If only a value is speci-
fied, we must verify whether the customer meant it as a minimum (“worst acceptable”) or a desired value.
It is also vital to define, and get our customer’s agreement to, a test for the property that will be used to
determine whether we have achieved an acceptable level; by making sure of this now, we guard against
delivering a product later that is acceptable according to our tests, but a failure according to the cus-
tomer’s.  We may have to research past projects, including literature, to determine “past” and “record”
values.  (Note that we did not attempt to research these for the properties defined in Figures 7 and 8).

We noted above that problem statements often prove to contain design decisions expressed as require-
ments.  We may likewise expect to find some properties stated to us in terms of expected solutions which
the customer hopes will achieve a desired but unspecified result.  For example, by way of describing ease
of use, a property, the customer may specify the currently popular human interface, a solution (“I need a
mouse–windowing environment”).  However, specifying a solution does not insure that the desired result
will be achieved (Gilb 1988).  It is part of our task to recognize when a statement has in fact specified a
solution.  This usually indicates that the intended property was difficult to define.  We attack a hard–to–
define property by identifying and defining the factors (“sub–properties”) that compose it.  For example,
productivity, error rate, and time–to–learn are factors in ease–of–use (Figure 8).

To get a complete inventory of the properties a system needs, we must often review similar systems to
identify properties omitted from the documentation we are given.  While some argue that “if it’s not
described in the documentation, it’s not required”, we would be remiss in our duties as hired experts, and
as engineers, if we did not pursue our own technical examination of what was needed, and take up any
apparent omissions or discrepancies with the customer.  Furthermore, if we fail to do so, we run the risk of
developing a system that the customer cannot use, and will not want (or if far enough from his needs, may
be unable) to pay for.

In developing a complete list of the properties, we may be overwhelmed if we try to achieve them all at
once.  One strategy for managing this risk is assigning priorities to each of the properties and using an
evolutionary process to develop the system (instead of the “waterfall” process which this paper follows for
convenience).  In the first “build” of the system, we focus on the “critical” top 10 to 20 properties, and in
later builds, work on the rest. (Gilb 1988)  Such procedures also help evaluate alternate designs.

Object–Class Specification
The Object–Interaction Diagrams, Statecharts, and Property Forms and Tables show which objects inter-
act, under what conditions, and how well, but not what classes are used to define the objects or the flows,
the relations between classes, nor structure of the classes.  For example, Figures 1 and 5–8 do not show
the class of the Value data flow that passes from Physical_Sensor to the Temperature_Monitor_System
with the Write request.  Defining classes is the province of Object–Class Specification.

The Object–Class Specification activity identifies and defines the class (including its attributes and struc-
ture) of each object, and the relations between the classes, using Object–Class Diagrams and the Diction-
ary.  In requirements analysis, Object–Class Specification defines the classes, attributes, and relations
required to describe the system object and its interactions with external objects.
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Object–Class Diagram Notation
Object–Class Diagrams (see Figure 9) describe the class of each object and information flow in the
Object–Interaction Diagrams of a system, and describe which classes are related to other classes in the
system.  In identifying the class of an object, the structural and behavioral modularity and properties of the
object are established for the class.

An OCD uses the same notation as an OID to describe objects (compare Figure 1).  Active objects are
shown by round–cornered rectangles (e.g. Temperature_Monitor_System), passive objects are shown by
square–cornered rectangles (e.g. State), and external objects are shown by trapezoids (e.g. Sensor_Fault_
Light).  “Shadowing” (e.g. Sensor_Limit_Light) indicates multiple objects of the same class which are
distinguished by some form of mapping, e.g. an address.  Operations are represented by hexagons (e.g.
Write) and are shown attached to the symbol for the class that defines the operation.  Interface operations,
i.e. operations proved by or requested by externals, are shown by lines with a dash–dot–dot pattern.  The
OCD notation for classes is the same as for objects, except that dashed lines are used (e.g. the external

Hardware_Light_Class).  The names of classes should be nouns with the suffix “_Class”11.

An OCD represents nine fundamental relations.  Three, “has part” (and its converse “is part of”),
“collection of” (and “is member of”), “contains” (and “is contained in”), are represented by graphical
enclosure (e.g., Status_Class has the parts Value, Lower_Limit, Upper_Limit, and State; for “collection
of” see Figure 13; “contains” is not used in this paper).  The representations for the other six (Figure 10)
are adapted from Booch’s Class Diagrams (Booch 1991).  For example, Figure 9 shows that Temperature_
Monitor_System and Sensor_Fault_Light are instances of the Temperature_Monitor_System_Class and
the Hardware_Light_Class respectively, and that Temperature_Monitor_System_Class uses the Hard-

                                                       
11 Since the names of both objects and classes will be nouns, OOSD uniformly includes the suffix “_Class” in the

names of classes.

Figure 9: Object–Cl ass Diagram for the Temperature_M onitor_System
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Upper_Limit
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System_Class
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3.0
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4.0
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ware_Light_Class and the Elapsed_Time_Class in its implementation only, and the other classes in its
interface.

An attribute is described with its name, its class,
and (if appropriate and known) its value.  To
avoid cluttering the OCD, the attributes of objects
and classes, and the parameters of operations, are
described in the Dictionary.  For “atomic” classes
and objects (i.e. that cannot be further
decomposed, or that the current problem will not
require us to decompose further), e.g.
Temperature_Class (Figure 11), OOSD supplies
pre–defined attributes, whose values the devel-
oper then specifies.  The attributes of “non–
atomic” classes and objects, e.g. Temperature_
Monitor_System and Temperature_Monitor_
System_Class (Figure 11), are determined by
inspecting the behavior description.

Figure 11: Sample Attribute Descript ions of Cl asses and Objects

Class/Object Attributes

Temperature_Class Values: –273.15 .. 6,049.0 °C (?)
Accuracy: 0.5
Physical Representation: 16 bit integer multiple of accuracy

Temperature_Monitor_System_ClassConnection_Period Elapsed_Time
Sensor_Test_Period (?) Elapsed_Time
…

Temperature_Monitor_System Connection_Period Elapsed_Time = 5 seconds
Sensor_Test_Period (?) Elapsed_Time = ?
…

Parameters are described with their name, direction of flow, and class name.  Figure 12 shows the
parameter descriptions for the operations Write and Execute of the Temperature_Monitor_System_Class.

Figure 10: OCD Relations

Uses in Implementation (only)

Undefined

Relations:

Derived from

Instance of

Selected by

Subclass of (Inherits)

Uses in Interface

Figure 12: Sample Descript ions of Op erat ion P arameters

Operation Parameters

Temperature_Monitor_System_Class.
Write

Value in Temperature_Class

Temperature_Monitor_System_Class.
Execute

Command in Command_Class
Lower_Limit in Temperature_Class
Upper_Limit in Temperature_Class
Sensor_Name in Sensor_Name_Class
Sensor_Log (?) out Sensor_Log_Class
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Identifying and Defining Classes
Unlike most object–oriented methods which identify classes by searching for all possible classes, then
eliminating or consolidating classes based on method–specific rules, OOSD identifies specific classes by
generalizing from the objects in the model, including their attributes and their operation parameters
(except when a class is re–used).  During requirements analysis, only those classes and relations are
described which are actually required to define the external view of the system object.  For example, each
class in Figure 9 is needed to define the Temperature_Monitor_System, its operations, its interactions with
other objects, and its attributes, as described in Figures 1, 5, and 6.

We start the Object–Class Specification activity in requirements analysis by identifying the classes of the
system object (e.g. Temperature_Monitor_System), and all external objects from which the system object

requests operations (e.g. Sensor_Limit_Light and Sensor_Fault_Light).12  We add a description of each
class to the OCD and Dictionary if the class is not yet defined; if we are re–using a class defined earlier in
the development, we refine the existing entries as needed; if we are re–using a class from a previous proj-
ect, we incorporate the definition.  We draw an arc for “use in implementation” from the class of the sys-
tem to each external class.

We add, in the appropriate class, a definition for each operation requested in the OID (e.g. Write and
Turn_On) and not already in the OCD and the Dictionary, including definitions for parameters of the
objects and information (e.g. Value) exchanged during the interaction, improving or creating subclasses of
re–used definitions as appropriate.  We identify the class of each parameter, and confirm that an appro-
priate description is in the OCD and Dictionary.  We add or refine attribute descriptions, for the system
class, of information (e.g. Connect_Period) that must be known by the system, as shown in the system’s
behavior description.  If a new class is used to define an attribute or an operation parameter, we draw a
“use in interface” arc from our system class to the new class; otherwise, we draw a “use in implementa-
tion” arc.

We create a separate OCD for each new class identified, showing its structure, operations, and relations
— easily re–used in other systems.  (In Figure 9 we included the detailed view of Status_Class to illustrate
some of the points in this paragraph.)  For each class added to the OCD, we define its required attributes
and operations.  We study the behavior diagram of the system object to identify the required operations
that each class must provide; e.g. the Temperature_Class needs to provide comparison operations which
our system will use.  If the class is atomic, we fill in the values for the predefined attributes (see Tempera-
ture_Class in Figure 11); if non–atomic, we need to determine what information is known about the class
by reviewing the behavior diagram and problem description.  For example, our problem description tells
us to record the status of a sensor, but omits to specify “status”; from the expected behavior of the system,
we concluded that the Status_Class should have four attributes, Value, State, Lower_Limit, and Upper_
Limit, and we documented our questions.  We need to define the physical representation of any class that
is used in an interface, to make sure our system can integrate with its external objects.  For example, in
Figure 11, we define the physical representation of Temperature_Class as “16–bit integer multiple of the
accuracy”, and in Figure 9, we show that the four attributes of Status_Class are implemented as compo-
nent objects (in the Dictionary entry we would specify bit alignment, etc.).  We complete the description of
each class by adding appropriate relations between the class and other classes.

                                                       
12 We need not represent the classes of external objects from which our system object requests no operations,

because our system does not need to know about them — they need to know about our system.  For the
convenience of reviewers, the OID includes objects which know about our system, but are not known by our
system, by providing a complete picture of the interactions between our system object and all externals.
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Validation of the Requirements
We want to verify that our model will meet the customer’s needs.  We need to eliminate any misinterpre-
tations of the requirements as specified by the customer, and differences between what the customer says
and what the customer may actually wish.  This is “validation”.  Although the topic has for convenience
been deferred to the end of this paper, if one defers the activity of validation to the end of development one
risks substantial inefficiency.  OOSD facilitates incorporating validation in the process of development.
The following four steps are done from time to time as the activities described above go on.

1) Verify that the various diagrams, forms, and Dictionary that describe the model are consistent.  For
example, each operation requested of the system object, as shown in the OID, must appear in the
Statechart as a condition for some change of state, with the possible responses; and each request
issued by the system, as shown in the OID, must appear in the Statechart as some action with the
conditions that lead to the request.  These consistency checks are necessary, but not sufficient, to
establish that the model is complete and correct.

2) Demonstrate that the behavior of the system object is correct.  Since the model is a visual prototype
of the system, we can demonstrate that the behavior of the system is correct by studying the inter-
actions described in the OID, devising test scenarios, and “executing” the model against the
scenarios, automated by support tools as may be available.  If the behavior is not what the customer
needs, we revise the model and re–test.

3) Verify that the properties as described meet the customer’s needs.  We review with the customer
any properties that pose high risk, i.e. a “worst acceptable” that exceeds the “record” or “plan”,
confirm that the customer is aware of the risk, and either establish that the risk will be accepted, or
explore alternatives.  We also need to analyze trade–offs of properties, to discover and see if we can
avoid risks of failing to achieve desirable or necessary combinations.  We need to identify any prop-
erties that conflict, e.g. high efficiency if achieved may lower re–useability.  We need to include an
evaluation of whether we can achieve acceptable levels for all properties combined, including
development cost, schedule, and resources.

4) Verify that we can expect the described behavior on schedule.  In our problem, the Temperature_
Monitor_System must finish recording the status of sensors before the next Mark_Time request

arrives13; or to consider a hypothetical different problem, a bank might have to process all transac-
tions in time to report daily balances to government supervisory agencies.  To analyze whether the
system will meet its schedule, I recommend the Rate Monotonic Analysis developed by the Soft-
ware Engineering Institute of Carnegie Mellon University (Sha 1988; Software Engineering Insti-
tute 1990), which predicts mathematically based on the CPU utilization of periodic and aperiodic
activities.

Product of Requirements Analysis
By definition, requirements analysis ends when the required context, behavior, and properties of a prob-
lem have been clearly identified and validated (“what”).  The next step beyond enters preliminary design
(“how”).  However, managers or customers often extend “requirements analysis” to include the top–level
decomposition of the system, so they can review documentation of this level before authorizing the rest of
the design.  This request can easily be accommodated by supplying the internal view of the system object,
developed at the start of preliminary design, along with the results of OOSD requirements analysis.

                                                       
13 The Temperature_Monitor_System, which is watching only an office building, has no close timing constraints

because it .  However, it could as easily be watching temperatures in a jet engine, or a nuclear reactor.
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OVERVIEW OF OBJECT–ORIENTED DESIGN
The OOSD approach to design refines the model produced during requirements analysis into a software
architecture (“preliminary design”), and creates a representation of that architecture coupled to the
implementation language (“detailed design”).  The result of preliminary design is a description independ-
ent of language and technology (e.g. what kind of network).  Detailed design yields a description specific
enough to produce code.

Preliminary Design
In preliminary design, the model of the application which was developed during requirements analysis is
now made the top level of the architecture.  This architecture is then refined, through considering “how”

the model will be implemented (see, for example, the elaboration of Figure 1 shown in Figure 13).14

The activities of requirements analysis now take new meaning as they are re–used to elaborate the archi-
tecture.  In this way, the problem model is refined into a solution model.  The products of this activity
appear as elaborated versions of the now familiar Object–Interaction Diagrams, Object–Class Diagrams,
Statecharts, and Property Specification Forms and Tables.  In addition we create an Object–Hierarchy

Diagram which illustrates the “has part” relations of all objects in the system.15

                                                       
14 Note that some of the points mentioned above as properly deferred to design, such as the user interface, will not

be taken up in this paper, which only sketches OOSD design activities.

15 Strictly speaking the the Object–Hierarchy Diagram is redundant, since its information is already in the Object–
Interaction Diagram, but I have found that the OHD helps some people visualize the construction of the system.

Figure 13: Temperature_M onitor_System  OID, Internal–View
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In Object–Interaction Specification, we revise the context OID of our system object, incorporating any
changes resulting from our discussions with the customer in the course of validating our model.  We then
create an OID which describes the internal structure of our system (Figure 13), called an internal or
“exploded” view.  An internal–view diagram illustrates which objects are part of a higher–level (“parent”)
object by showing them as inside the higher–level object.  Object–Interaction Specification at this stage
also shows how a parent interacts with its components, and how the components interact.

Boldface lines in Figure 13 indicate an object that has an internal view, during requirements–analysis.
Off–page connectors represent objects that the parent object interacts with.

The internal view of an object, and diagrams
that represent external views of the object, must
consistently show all the interactions between
the object (or its components) and objects out-
side.  An operation which during requirements
analysis we viewed as being requested by a par-
ent object may now, at this stage, prove in fact
to be only conceptual, and actually implemented
as a request by one or more component objects.  An interface operation requested of the parent may
likewise prove to be only conceptual, and implemented as a request on a component.

OOSD develops component objects by applying a set of guidelines (“heuristics”), and referring to the sys-
tem object’s properties and to software–engineering goals, to allocate what each parent object is required
to know and to do, e.g. a component may be created to manage each external object.  We want compo-
nents that have well–defined responsibilities and co–operate to implement the parent object.  Components
may be re–used, e.g. building a new system that incorporates an existing system, or may be instances of
re–used classes from other systems or other parts of the present system.

With each component object, we repeat the procedure of Behavior Specification, Property Specification,
and Class Specification, which we performed for the system object in requirements analysis.  If we re–use
a component (or a class), we can re–use its behavior diagrams, property tables and forms, and class dia-
gram.  If we re–use a component developed outside OOSD, we create diagrams, tables, and forms as
needed.

We verify the design of an object (its internal view) against its external view.  The design of a non–atomic
object is best verified before decomposing any non–atomic components.  A good design will correctly
implement the parent object’s external behavior and interactions, and will achieve the parent object’s
required minimum for every property.  The best design will optimize property requirements.

OOSD allows the unusually complete further verification of comparing the results of “executing” the
model represented by the internal OID and Statechart of an object, and the external Statechart of its com-
ponents, with the results of “executing” the model represented by the object’s external OID and State-
chart.  We thus obtain a recursive proof, although not a mathematical (“formal”) proof, that the system is
correctly implemented and achieves the required properties.  We also re–apply Rate Monotonic Analysis
to verify that the design will perform the described behavior on schedule.

OOSD generally begins with the overall OID and then works down (except where re–using), in a “breadth
first” instead of “depth first” strategy.  “Breadth first” generally reveals most errors in the external view of
an object before we have designed its internal structure.  With “depth first”, once we found errors in an
external–view object, we might have to revise all the lower–level objects used to build it.

Preliminary design formally ends when all non–atomic objects have been represented with internal views
(created or re–used).  A project may, if desired, safely choose to begin detailed design for some or all
components without completing preliminary design.  For example, we could start detailed design for the

Localization and information hiding are fundamental
notions of object–oriented software engineering.
The abstraction of an object puts components inside,
“hiding” them, while offering a visible set of opera-
tions which may be requested.  Work in the present
system, and any changes, are thus localized and
easier to follow.  The OID enforces both localization
and hiding.
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Temperature_Monitor_System without designing the internal structure of the components Data_Log,
Monitor, or User.  If we do carry preliminary design to a formal conclusion, we may get better re–
useability, including ease of re–implementation with different technology.  This is the usual trade–off of
development cost now for potential benefit later.

Detailed Design
We now complete the parallelism of the OOSD process by revisiting the same activities once again, this
final time yielding a description detailed enough to generate code.  At this stage our four activities (plus
verification) are

1) Language–Specific Software Architecture Specification16

2) Object–Class Specification
3) Behavior Specification
4) Property Specification

These activities modify the graphic and textual representations of the model already produced, and pro-
duce new representations.  As before, after a first draft of Software Architecture Specification, the activi-
ties can be performed in almost any order; since the performance of each generally suggests refinements
in the others, an iterative approach is recommended.

For each object and class defined in Object–Interaction Diagrams and Object–Class Diagrams, decisions
are now made on how to represent these objects and classes in the implementation language.

Ada and C++ are typical of languages current in software development.  For Ada, OOSD uses a modified
form of Ray Buhr’s notation (Buhr 1984; Buhr 1990) in graphic representation, and Ada Program Design
Language (“PDL”) in textual representation.  For C++, OOSD uses a notation developed by Mark V Sys-
tems Limited for graphic representation, and a C++ PDL (or “pseudo–code”) for textual representation.
There is a straightforward mapping from the objects and class defined in preliminary design to the Ada or
C++ software components.  Generally, the graphic representation is produced first, then the textual.

While partial automation is available for representing the objects as software components, some knowl-
edge of the language is needed for good choices between alternate representations (see Figures 14–17).
Generation of Ada and C++ PDL from the respective graphics, and vice versa, has been automated.

Object–Class Specification refines the diagrams produced in preliminary design, capturing any language–
specific classes and relations.  This is mainly documentation maintenance.

Behavior Specification now represents the dynamic behavior of the language–specific architecture, and
demonstrates that the behavior of the architecture implements the behavior specified for the model.  The
language–specific Structure Diagrams and PDL are elaborated to represent the behavior of the software
components.  Behavior Specification

1) Represents the external view of the behavior of the corresponding object or class in the PDL as a
comment, written from the perspective of the user of the component, attached to the declaration of
the component.

2) Represents the internal view of the behavior of the corresponding object or class.

                                                       
16 Some users like to split Software Architecture Specification in two.  Their first activity refines the OID’s

developed during preliminary design to show specific technology (e.g. a particular type of network or bus) that
will be used, independent of language issues.  The second creates the language–specific representation.
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a) Updates the Structure Diagram for each component so to capture as much detail as possible in
the notation.

b) Creates a body for each component, and describe the implementation of the component in
terms of the internal behavior of the object.

c) For each operation of the object or class, creates a body for the language–specific representa-
tion (i.e. a subprogram or entry in Ada, or a member function in C++), and describes
language–specific logic for the behavior associated with the operation.

3) Adds descriptions of any language–specific components needed to complete the representation.
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Figure 16: C++ Structure Diag ram Temperature_M onitor_System
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Property Specification identifies the properties of each software component, and demonstrates that they
meet the required properties of the corresponding objects.  The Property Specification Forms and Tables
are used to associate the corresponding  properties of objects and components, to govern the choices of
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mapping to components from preliminary design, and similarly in choosing language–specific
implementation.

We verify the language–specific design against the language–independent design.  To establish that the
correct dynamic behavior has been described for the software architecture, OOSD demonstrates that the
dynamic behavior described for each software component is correct, which in turn is done by analyzing or
executing the software component to verify that it behaves according to the description of the behavior of
the corresponding object.  This process could be automated (for example, executing the PDL).  Compo-
nents must be analyzed or executed to verify that they achieve the required properties.  We also re–apply
Rate Monotonic Analysis.

Finally, the Dictionary is refined to reflect all work to date as a summary and for cross–reference.

CONCLUSION
OOSD develops a single consistent abstract model of the elements of a problem.  During requirements
analysis OOSD builds this model from the required objects, classes, functions, behavior, and properties of
the problem.  During design, the model is refined into an architecture for software components, with a
smooth transition to code.  The constant refinement facilitates the tracing of requirements throughout the
process.  Careful study of object interactions and behavior makes this method sensitive to real–time issues.

OOSD allows particularly rigorous behavior analysis.  This detects errors early.  However, the price is a
higher front–end work load, since time and effort must be invested in detailed behavior descriptions
(unless descriptions from previous projects can be re–used), and a delay in the production of code (even
though code production will be more efficient when it occurs).  When there is no human–safety or other
substantial reliability concern, a less formal use of the method may be adequate.

OOSD’s uniform support for localization and information hiding leads to well–defined objects.  Each
object is individually testable and provides sufficient information to develop tests.  The model developed
in requirements analysis provides sufficient information to begin designing integration or acceptance tests
for the system, which are then refined as the model is refined.  The effects of change can be predicted with
assurance, both in the diagrams, forms, and tables of the model, and in the final system.

Formally defining the complete structure, interactions, behavior, and properties of all objects in the sys-
tem, including the system object, allows validation and verification that the system is correctly imple-
mented.  Generating classes from objects in the system yields reliable, re–useable components.  Carrying
out the same essential activities during requirements analysis, preliminary design, and detailed design,
results in unity of the model.  The product is easy to understand and maintain, and closely follows the
“real world”.
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