
Software Requirements Engineering Requirements Specification

Sofware Requirements Engineeing

Three main tasks in RE:

1 Elicit — find out what the customers really want.
• Identify stakeholders, their goals and viewpoints.

2 Document — write it down (Requirements Specification).
• Understandable
• Precise
• Complete
• Consistent
• Unambiguous
• Modifiable
• Correct

3 Analyze — check for above qualities.



Software Requirements Engineering Requirements Specification

Requirements Elicitation

Key problem areas:

Scope — what is the boundary of the system?

Understanding

• What is needed
• What is possible/practical
• Difficulties in communication of concepts/ideas
• Domain knowledge
• Conflicting needs or priorities

Volatility — Requirements change over time.



Software Requirements Engineering Requirements Specification

Collaborative Requirements Gathering

• Meetings with designers, customers and other stakeholders.

• Rules for preparation & participation.

• Agenda.

• Facilitator.

• “Definitions mechanism” (work sheet, flip charts, wall stickers
etc.)

• Goals:
• identify the problem,
• propose elements of the solution,
• negotiate different approaches,
• specify preliminary set of solution requirements.



Software Requirements Engineering Requirements Specification

Example sequence

1 Stakeholders write and distribute “product request”

2 Pre-meeting, each participant identifies
• objects in system
• objects in environment
• services (processes or functions)
• constraints
• performance criteria

3 Meeting
• present lists
• combine, move etc. to agree on consensus lists
• refine definitions for each word or phrase (objects etc.)
• maintain list of issues raised that aren’t resolved.



Software Requirements Engineering Requirements Specification

Requirements Specification

Essential parts of an SRS:1

1 Introduction

1 Purpose — of this document, including intended audience
2 Scope

1 what will be produced
2 what will it do
3 application, benefits, objectives and goals

3 Definitions, acronyms and abbreviations
4 References
5 Overview — what is to follow and how is it organized

1From IEEE Std 830-1998 Software Requirements Specifications



Software Requirements Engineering Requirements Specification

SRS Essential parts (cont’d)

2 Overall description — general factors that affect the product
(not detailed requirements).

1 Product perspective — how does it relate to other products?
• Interfaces (system, user, hardware, other software,

communications)
• Memory constraints
• Operation constraints (could be part of UI)
• Site adaption requirements — how will product be adapted for

specific sites?

2 Product functions — description of major functions.
Organized in logical way (for customer).

3 User characteristics — what do we know about the intended
users?

4 Constraints — any other items that will limit design decisions.
5 Assumptions and dependencies
6 Apportioning of requirements — what may be delayed until

later?



Software Requirements Engineering Requirements Specification

SRS Essential parts (cont’d)

3 Specific Requirements
• All requirements
• Detailed enough to enable designers to design a satisfactory

system and for testers to test it.
• All must be externally perceivable (e.g., by users, operators or

other systems).
• Must include description of every input/stimulus and

output/response and their relations.
• Each requirement should be uniquely identifiable.
• Each requirement should be verifiable.
• Organized for readability.



Software Requirements Engineering Requirements Specification

Use Cases

• A technique for capturing functional requirements of system.

• Describe typical interactions between users (actors2) and the
system.

• UML does not specify a standard presentation format or
notation for Use Cases.

• Note that use cases are quite distinct from use case diagrams,
which illustrate relationships between use cases and actors.

2An actor is actually a role that a user may play w.r.t. the system.



Software Requirements Engineering Requirements Specification

Scenario Example

Consider first a scenario—a particular sequence of events in the
interaction between the user and the system.
Consider Automated Banking Machine example:

Goal: Withdraw money.
The customer inserts the bank card in the ATM card slot
and is prompted to enter her personal identification
number. The system checks that the PIN is correct and
then prompts the customer to select a transaction type,
account and amount. The user selects a withdrawal. The
system verifies that the withdrawal is permitted (e.g.,
funds are available), dispenses the money and returns the
card.



Software Requirements Engineering Requirements Specification

Senario (cont’d)

• There are many possible variations on this sequence (e.g., PIN
is not correct) so there will be many scenarios with the same
goal.

• A use case describes a set of scenarios with a common goal.

See: Transaction

http://www.engr.mun.ca/~{}dpeters/9874/Examples/ATM/transaction.html


Software Requirements Engineering Requirements Specification

Use Case tips

• Always keep in terms of external view (problem domain).

• Name should be short active verb phrase.

• Steps clearly describe action by actor or system.

• Other information:

entry condition(s) Condition(s) that must be true before a use
case can begin. Also known as pre-condition.

exit condition(s) Condition(s) that the system will ensure is
true at the end of the use case. Also known as
guarantee or post-condition

trigger Event that gets the use case started.

• See also useful links on the web page.



Software Requirements Engineering Requirements Specification

State Diagrams

• Shows behaviour in terms of events and states

• Events occur at instants, time elapses in states

• States can be nested either orthogonal (parallel) or not.



Software Requirements Engineering Requirements Specification

State Diagram Example



Software Requirements Engineering Requirements Specification

Four Variable Model



Software Requirements Engineering Requirements Specification

SCR Concepts

Controlled variables quantities external to the system whose values
are to be changed by the system.

Monitored variables quantities external to the system whose values
affect the current or future behaviour of the system.

Output variables quantities internal to the system whose values
represent controlled variables.

Input variables quantities internal to the system whose values
represent monitored variables.



Software Requirements Engineering Requirements Specification

SCR Concepts (cont’d)

Condition predicate on past or current values of variables.

Event instant when one or more relevant conditions change value.

Event class a subset of the events relevant to a particular system.

History initial conditions plus sequence of events.

Mode a set of system histories that are equivalent in some respect.

Mode class a set of modes that partition the possible histories (i.e.,
every history is in exactly one mode in a particular mode class).

Controlled value relations define the acceptable values of each
controlled quantity for any possible history.

• Will often use modes in one or more mode classes.
• Tabular expressions to aide readability.



Software Requirements Engineering Requirements Specification

Event Class Notation

Notation Interpretation
scalar tabular

pi

@T (pi ) @T pi becomes true

@F (pi ) @F pi becomes false

WHILE(pi ) T pi remains true

WHILE(¬pi ) F pi remains false

WHEN(pi ) t pi true before

WHEN(¬pi ) f pi false before

t′ pi true after

f ′ pi false after

CONT(pi ) — pi doesn’t change

∗ true (don’t care)

� false (can’t happen)



Software Requirements Engineering Requirements Specification

Example Mode Class Definition

Mode Class : Clprobe

Modes : Md test, Mdpulse

Initial Mode : Md test

Transition Relation :
Mode Event New mode
Md test @T (mPulse = sDown) Mdpulse

Mdpulse @T
(
Since(@T

(
Mdpulse

)
) > 100 ms

)
Md test


	Software Requirements Engineering
	Requirements Specification
	Use Cases
	State Diagrams
	SCR Requirements Method


