Automating Bug Report Assignment

John Anvik
Department of Computer Science
University of British Columbia

janvik@cs.ubc.ca

ABSTRACT

Open-source development projects typically support an open
bug repository to which both developers and users can re-
port bugs. A report that appears in this repository must
be triaged to determine if the report is one which requires
attention and if it is, which developer will be assigned the re-
sponsibility of resolving the report. Large open-source devel-
opments are burdened by the rate at which new bug reports
appear in the bug repository. The thesis of this work is that
the task of triage can be eased by using a semi-automated
approach to assign bug reports to developers. The approach
consists of constructing a recommender for bug assignments;
examined are both a range of algorithms that can be used
and the various kinds of information provided to the al-
gorithms. The proposed work seeks to determine through
human experimentation a sufficient level of precision for the
recommendations, and to analytically determine the trade-
offs of the various algorithmic and information choices.

Categories and Subject Descriptors

D.2 [Software|: Software Engineering

General Terms

Management

Keywords

Bug report assignment, triage

1. THE BUG TRIAGE PROBLEM

“Given enough eyeballs, all bugs are shallow.” I
dub this: “Linus’ Law”. — Eric Raymond [11]

Open-source software projects commonly use an open bug
repository to allow both developers and users to post prob-
lems encountered with the software, suggest possible en-
hancements, and comment upon existing bug reports. A
potential advantage of an open bug repository is that it may
allow more bugs to be identified and solved, improving the
quality of the software produced [11].

However, this potential advantage comes with a significant
cost. Each bug that is reported must be triaged to determine

Copyright is held by the author/owner.
ICSE’ 06, May 20-28, 2006, Shanghai, China
ACM 1-59593-085-X/06/0005.

937

250

200 1

150 4

100 -

50

0
Jun-04

Sep-04 Dec-04 Mar-05 Jun-05

Figure 1: Daily rate of bugs submitted to Eclipse
Platform project over one year.

if it describes a meaningful new problem or enhancement,
and if it does, it must be assigned to an appropriate de-
veloper for further handling [12]. Consider the case of the
Eclipse Platform.® Figure 1 shows the rate of bug report
submission for the Eclipse Platform for the one year period
between the release of version 3.0 and 3.1. During this pe-
riod 13,016 reports were filed, averaging 37 reports per day,
with a maximum of 220 reports in a single day. Assuming
that a triager takes approximately five minutes to read and
handle each report, three person-hours per day was spent
on average triaging bug reports.?

The triage problem is not exclusive to open-source soft-
ware projects. Members of closed-source projects, whose
bug repositories are not openly available, have commented
on the same problem. However, quantitative evidence of the
magnitude of the problem is not available.

1.1 Bug Triage: State of the Practice

The current state of the practice for bug triage is to use
a manual approach, and the approach differs from project
to project. For the Mozilla project bug reports are triaged
by quality assurance volunteers, rather than the developers,
because of the volume of reports. A triager from the project

'Eclipse provides an extensible development environment,
including a Java IDE, and can be found at www.eclipse.org
(verified 31/08/05).

2The average time taken to triage bug reports is not known.

commented:

Everyday, almost 300 bugs appear that need triag-
ing. This is far too much for only the Mozilla
programmers to handle.?

Early on, the Eclipse Platform project had a single devel-
oper triage their bug reports. However, as the task became
too overwhelming for a single person, the triaging was de-
centralized and now each component team monitors the bug
report inbox for their component.*

1.2 Automating Bug Triage

Regardless of the specifics of the approach used, a man-
ual approach to bug triage takes up resources that might
be better applied to other problems within the development
project. We would like to recover as much of these resources
as possible by minimizing the need to have a person triage
the bug reports. Fully automating the triage process may
not be a realistic goal because some human interaction is
necessary due to the amount of contextual knowledge re-
quired to correctly make decisions about each bug report.

1.2.1 Semi-automating Bug Report Assignment

A significant number of bug reports in bug repositories
describe valid problems [1]. As all of these reports must be
assigned to a developer, bug report assignment is an impor-
tant part of triaging bug reports. Bug assignment is also
important because mistakes made in assignment cause de-
lays in the resolution of a bug report.

The assignment of bug reports is an example of a triage
task that requires a lot of contextual knowledge. The triager
needs to draw on knowledge about the product, the devel-
opment team structure, individual developer experience and
expertise, who handled similar bug reports, development
schedules, and other information relevant for a particular
bug report.

We believe that semi-automation of bug assignment can
improve the bug firing process by reducing the average time
taken to triage a bug and by reducing the number of incorrect
assignments made by triagers.

As bug assignment has similar characteristics to those of
other bug triage activities, the semi-automation of this task
provides a model for semi-automating other triage tasks.
It is also an example of a human-supported task that is
embedded in a process, which raises the question of how
much automation is sufficient and how much incremental
improvement can be made by using more information.

2. ANATOMY OF A BUG REPORT

Bug reports stored in open bug repositories such as Bugzilla,®

GNATS,® and JIRA” all have a similar structure. Each
bug report includes pre-defined fields, free-form text, attach-
ments, and dependencies.

The pre-defined fields provide a variety of categorical data
about the bug report. Some values, such as the report identi-
fication number, creation date, and reporter, are fixed when
the report is created. Other values, such as the product,

3Personal communication with M.W., 05/03/05
4Personal communication with D.H., 23/02/05
Swww.bugzilla.org/, verified 26/08/05
Swww.gnu.org/software/gnats/, verified 07/09/05
Twww.atlassian.com/software/jira/, verified 07/09/05

938

component, operating system, version, priority, and sever-
ity, are selected by the reporter when the report is filed,
but may also be changed over the lifetime of the report.
Other fields routinely change over time, such as the person
to whom the report is assigned, the current status of the
report, and if resolved, its resolution state. There is also a
list of the email addresses of people who have asked to be
kept up-to-date on the activity of the bug.

The free-form text includes the title of the report, a full
description of the bug, and additional comments. The full
description typically contains an elaborated description of
the effects of the bug and any necessary information for a
developer to reproduce the bug. The additional comments
include discussions about possible approaches to fixing the
bug, and pointers to other bugs that contain additional in-
formation about the problem or that appear to be duplicate
reports.

Bug reporters and developers may provide attachments to
reports to provide non-textual additional information, such
as a screenshot of erroneous behaviour.

The bug repository tracks which bugs block the resolution
of other bugs (i.e. bug dependencies) and the activity of each
bug report. The activity log provides a historical record of
how the report has changed over time, such as when the
report has been reassigned, or when its priority has been
changed.

3. PROPOSED SOLUTION

Our proposed solution is to create a recommender that
produces a set of possible developers to whom a bug re-
port might reasonably be assigned. The recommender for a
project is created by providing an algorithm with informa-
tion about previously fixed bug reports to create a model of
expertise of the project developers. This model is then used
to provide the set of recommendations.

More specifically, a recommender is created for a project
by providing instances of information types (I1 ...I,), such
as the bug report description, to a recommendation algo-
rithm (A: ...Ay) as shown in Figure 2. The recommender
is used then to produce a set of recommendations (R1 ... Ry)
by providing information about the new bug report to the
recommender (see Figure 3).

Although there are many possible recommendation algo-
rithms, our work is restricted to examining machine learning
algorithms. The algorithms that we examine are supervised
machine learning algorithms, clustering algorithms, and ex-
pertise networks. Just as there are many possible recom-
mendation algorithms, there are many possible information
types that could be used. Our work examines eight infor-
mation types:

1. the textual description of the bug,
. the component the bug is being reported for,
. the operating system that the bug occurs on,

. the hardware that the bug occurs on,

. the developer who owns the associated code,

2
3
4
5. the version of the software the bug was observed for,
6
7. the current workload of the developers,

8

. alist of developers actively contributing to the project.

Information Types
[.

|

n

N
~ AL LA,
%
Recommender

Figure 2: Creating a recommender.

Information Types
Il

|

Recommender

n

Recommendations
R;...R,

Figure 3: Making a recommendation.

With the exception of code ownership, all this information
can be extracted from bug reports. The code ownership may
be found by correlating information from a bug report, such
as an exception trace, with an ownership architecture [3].

Given that sufficient information is available, the preci-
sion of a recommender is a function of the recommendation
algorithm and the information types used. This precision
lies along a spectrum as shown at the bottom of Figure 4.
There exists a point along this spectrum at which the rec-
ommender is sufficiently precise to be of practical use by
triagers. The exact location of this point is unknown, but
will be a topic of investigation.

3.1 Finding the Point

To date we have evaluated nine instances of our approach
framework (four supervised machine learning algorithms and
one clustering algorithm with different combinations of three
information types) and analytically compared their preci-
sions [2]. From this previous work, we found that using
a Support Vector Machine algorithm [6, 8] with the bug
description, product component, and a list of actively con-
tributing developers produces a recommender with 64% pre-
cision for Firefox and 86% precision for Eclipse. We believe
that this is sufficient precision for an evaluation of the rec-
ommenders by Mozilla and Eclipse triagers. In Figure 4 this
point is represented by the point labeled As(I1,I2,13).

To determine if we have reached the point of sufficient
precision, we plan to conduct a human evaluation of our ap-

939

Information
Types

Agly, 1, 15)

1)
Recommendation
Algorithms
Less N More
Precise | 2 Precise

Figure 4: The precision space for automated bug
report assignment.

proach. To aid this evaluation, a Firefox extension which
presents recommendations for the currently viewed bug re-
port has been created for use by Mozilla triagers. A similar
Eclipse plug-in will be created for use by Eclipse triagers.

The triager evaluation will be done in two phases. The
first phase will collect baseline data that will be used to
gauge the effect of the assignment recommender. During
this time period two metrics will be collected: the time it
takes for a triager to triage a bug report, and which reports
they triage.

During the second phase of the evaluation, the same met-
rics from phase one will be collected, as well as information
such as how often the triager used a recommendation, and
the perceived usefulness of the tool.

Comparing the average time to triage a bug report dur-
ing each of these phases will show whether or not we have
reduced the average time to triage a report, and comparing
the number of reports that are reassigned before and after
the use of the tool will show if the tool helped to reduce the
number of reassignments.

3.2 Further Exploration of thePrecision Space

In addition to the human evaluation of our bug assignment
recommender, we will continue to explore the precision space
(the cloud labeled A;(I1,Iz, ... I,) in Figure 4).

This space is occupied by other combinations of recom-
mendation algorithms and information types. As mentioned
in Section 3.1, we have already explored some of this space
using three supervised machine learning algorithms, a clus-
tering algorithm, and three information types. The remain-
ing five information types from Section 3 will be explored us-
ing an information theoretic approach to feature selection [7]
to evaluate their contribution to improving the precision of a
recommender. In addition, two additional recommendation
algorithms will be evaluated: a nearest-neighbour clustering
algorithm [13] and an expertise network. The expertise net-
work is to be a graph that has two types of nodes: experience
atoms [9], representing data from the information types and
developer nodes, representing individual developers. Edges
weighted by atom frequency will connect experience atoms
to developers. Recommendations are made by summing the
weighted edges of the relevant experience atoms to provide

a developer score for a new report. Ranking these scores
provides the list of recommendations for a new bug report.

These additional combinations of recommendation algo-
rithms and information types will be evaluated analytically
and compared to the results of our previous work [2] to de-
termine what decision-making mechanisms and information
types improve or degrade the precision.

4. RELATED WORK

We are aware of only two other efforts in automated bug
assignment. Cubrani¢ and Murphy [5] used a text catego-
rization approach similar to our previous work [2], and with
a Naive Bayes recommendation algorithm achieved precision
levels of around 30% on Eclipse. Our work expands on this
previous work with more thorough preparation of data, the
use of additional information beyond the bug description,
the exploration of more algorithms, and the determination
of a better performing algorithm. Canfora and Cerulo [4]
outline an approach based on information retrieval in which
they reported recall levels of around 20% for Mozilla. This
work presents an approach that achieves a higher level of
precision for these two projects, and we believe it is likely
to help triagers on more systems.

Podgurski et al. also applied a machine learning algo-
rithm to bug reports, but in their case the algorithm was
applied to cluster function call profiles from automated fault
reports [10]. The clusters were used to prioritize software
faults and to help diagnosis their cause rather than to as-
sign reports to appropriate developers.

In trying to determine developers with expertise in partic-
ular parts of the system, the bug assignment problem is sim-
ilar to the problem of recommending experts in particular
parts of the system to assist with the development process.
Mockus and Herbsleb’s Expertise Browser system, for ex-
ample, uses source code change data from a version control
system to determine experts for given elements of a software
project [9]. Our approach can be viewed as trying to rec-
ommend such experts, but the recommendation is based on
different data for a different purpose. Specifically, when we
make a recommendation on experts to solve the report, we
only have available the information in the report when it is
filed, which is largely a free-form description of a problem
or possible enhancement.

5. EXPECTED CONTRIBUTIONS

This research is expected to make three contributions:

1. A demonstration of an approach to semi-automate bug
assignment that improves the bug fixing process by
making it easier to find an appropriate developer and
by reducing the number of incorrect assignments.

2. A characterization of the space of improvements to the
approach using different recommendation algorithms
and the contribution of each information type in cre-
ating a recommender for bug assignment.

3. A methodology for creating semi-automated approaches
for bug triage tasks.

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In Proceedings of Eclipse

940

Technology Exchange Workshop (eTX) at OOPSLA
2005, pages 39-43, 2005.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proceedings of the 28th International
Conference on Software Engineering (ICSE’06), 2006.
To appear.

I. T. Bowman and R. C. Holt. Reconstructing
ownership architectures to help understand software
systems. In Proceedings of International Workshop on
Program Comprehension, pages 28-37, 1999.

G. Canfora and L. Cerulo. How software repositories
can help in resolving a new change request. In
Workshop on Empirical Studies in Reverse
Engineering, 2005.

D. Cubrani¢ and G. C. Murphy. Automatic bug triage
using text classification. In Proceedings of Software
Engineering and Knowledge Engineering, pages 92-97,
2004.

S. R. Gunn. Support Vector Machines for
classification and regression. Technical report,
University of Southampton, 1998.

I. Guyon and A. Elissee. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157-1182, March 2003.

T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on
Machine Learning, pages 137-142, 1998.

A. Mockus and J. D. Herbsleb. Expertise browser: A
quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on
Software Engineering, pages 503-512, 2002.

A. Podgurski, D. Leon, P. Francis, Wes Masri,

M. Minch, Jiayang Sun, and B. Wang. Automated
support for classifying software failure reports. In
Proceedings of the 25th International Conference on
Software Engineering, pages 465-475, 2003.

E. S. Raymond. The cathedral and the bazaar. First
Monday, 3(3), 1998.

C. R. Reis and R. P. de Mattos Fortes. An overview of
the software engineering process and tools in the
Mozilla project. In Proceedings of the Open Source
Software Development Workshop, pages 155-175, 2002.
1. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools with Java Implementations.
Morgan Kaufmann, 2000.

