
Quality of Bug Reports in Eclipse

Nicolas Bettenburg*
nicbet@st.cs.uni-sb.de

Sascha Just*
just@st.cs.uni-sb.de

Adrian Schröter*
adrian@st.cs.uni-sb.de

Cathrin Weiß*
weiss@st.cs.uni-sb.de

Rahul Premraj*§
premraj@cs.uni-sb.de

Thomas Zimmermann+§

tz@acm.org

* Department of Computer Science
Saarland University, Saarbrücken, Germany

+ Department of Computer Science
University of Calgary, Calgary, Alberta, Canada

ABSTRACT
The information in bug reports influences the speed at which bugs
are fixed. However, bug reports differ in their quality of informa-
tion. We conducted a survey among ECLIPSE developers to de-
termine the information in reports that they widely used and the
problems frequently encountered. Our results show that steps to re-
produce and stack traces are most sought after by developers, while
inaccurate steps to reproduce and incomplete information pose the
largest hurdles. Surprisingly, developers are indifferent to bug du-
plicates. Such insight is useful to design new bug tracking tools
that guide reporters at providing more helpful information. We also
present a prototype of a quality-meter tool that measures the quality
of bug reports by scanning its content.

1. INTRODUCTION
Bug reports are vital for any software development. They al-
low users to inform developers of problems that they encountered
while using a software. A bug report typically contains a de-
tailed description of a failure and occasionally pointers to the lo-
cation that contains the fault (in form of patches or stack traces).
However, bug reports often provide inadequate or incorrect infor-
mation and developers have to face bugs with descriptions such
as “wqqwqw” (ECLIPSE bug #145133), just “layout” (#52050) or
“Logfin” (#178041). It is no surprise that developers are slowed
down by poorly written bug reports because identifying the prob-
lem takes more time.

In this paper, we extract the notion of quality of bug reports from
the perspective of developers. There are several factors that impact
the quality of bug reports such as length of description, formatting,
and presence of stack traces and attachments. In order to find out
which ones matter the most, we asked 336 ECLIPSE developers to

1. complete a survey on important information in bug reports
and problems faced with bug reports. We received a total of
48 responses to our survey (Section 2).

2. rate bug reports on a five-point Likert scale [10] from very

§Contact authors are Rahul Premraj and Thomas Zimmermann.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

poor to very good. We received a total of 397 votes on 100
randomly selected bug reports (Section 3).

By knowing what developers desire in bug reports, it is possible to
provide tool support for reporters to furnish such information. For
instance, one utility would be to provide immediate feedback on the
quality of a bug report to users (like strength meters for passwords).
As a first step in this direction, we developed a prototype tool called
quZILLA that gauges the quality of bug reports (Section 4). We
conclude this paper with a discussion on related work (Section 5)
as well as possible improvements and future work (Section 6).

2. SURVEY ON BUG QUALITY
In order to collect facts on how developers use the information in
bug reports and what problems they face, we decided to conduct an
online survey among the developers of the ECLIPSE project.

2.1 Survey Design
For any survey, the response rate is crucial to draw generalizations
from a population. Keeping a questionnaire short is one key to
a high response rate. In our case, we aimed for a total time of
five minutes, which we also advertised in the invitation email (“we
would much appreciate five minutes of your time”).

Selection of Participants.
The ECLIPSE bug database contains over 1,100 developers that are
assigned to bug reports. We were interested in experienced de-
velopers because their experience is crucial to our research. We
defined experienced as being assigned to at least fifty bug reports
in the Eclipse project (as of June 13, 2007). We contacted 365 de-
velopers who met this criterion via email, 29 emails bounced back,
leaving us with a population size of 336 developers. The results in
this paper take into account the 48 responses that we received until
July 22, 2007. The response rate of 14% is comparable to other
Internet surveys, which typically range from 2% to 30%.

The Questionnaire.
Keeping the five minute rule in mind, we chose the following ques-
tions that we grouped into three parts (see also Figure 1):

Contents of bug reports. Which items have developers previously
used when fixing bugs? Which three items helped the most?

Such insight greatly aids in guiding reporters to provide or
even focus on information in bug reports that is most impor-
tant to developers. We provided sixteen items selected on the
basis of Eli Goldberg’s bug writing guidelines [7]; or being
standard fields in the BUGZILLA database.

Contents of bug reports. Q1: Which of the following items have you previously used when fixing bugs?
Q2: Which three items helped you the most?

q product q hardware q observed behavior q screenshots
q component q operating system q expected behavior q code examples
q version q summary q steps to reproduce q error reports
q severity q build information q stack traces q test cases

Problems with bug reports. Q3: Which of the following problems have you encountered when fixing bugs?
Q4: Which three problems caused you most delay in fixing bugs?

You were given wrong: There were errors in: The reporter used: Others:
q product name q code examples q bad grammar q duplicates
q component name q steps to reproduce q unstructured text q spam
q version number q test cases q prose text q incomplete information
q hardware q stack traces q too long text q viruses/worms
q operating system q non-technical language
q observed behavior q no spellcheck
q expected behavior

Comments. Q5: Please feel free to share any interesting thoughts or experiences.

Figure 1: The questionnaire presented to Eclipse developers.

Responders were free to check as many items for the first
question (Q1), but at most three for the second question (Q2),
thus indicating the importance of items.

Problems with bug reports. Which problems have developers en-
countered when fixing bugs? Which three problems caused
most delay in fixing bugs?

Our motivation for this question was to find prominent ob-
stacles that can be tackled in the future by a more cautious,
and perhaps even automated, reporting of bugs.

Typical problems are reporters who accidentally provide in-
correct information, for example an incorrect operating sys-
tem.1 Other problems in bug reports include poor use of lan-
guage (ambiguity), bug duplicates, and incomplete informa-
tion. Spam recently has become a problem, especially for the
TRAC issue tracking system. We decided not to include the
problem “incorrectly assigned to me” because bug reporters
have little influence on the triaging of bugs.

In total, we provided twenty-one problems that developers
could select. Again, responders were free to check as many
items for the first question (Q3), but at most three for the
second question (Q4).

Comments. What are the thoughts and experiences of developers
with the quality of bug reports?

Parallelism between Questions.
In the first two parts of the survey, questions share the same items
but have different limitations (select as many as you wish vs. the
three most important). We will briefly explain the advantages of
this parallelism on the example of Q1 and Q2.

1. Consistency check. When fixing bugs, all items that helped
a developer the most (selected in Q2) must have been used
previously (selected in Q1). If this is not the case and an item
is selected in Q2 but not in Q1, the response is inconsistent
and ignored.

1Did you know? In ECLIPSE, 205 bug reports were submitted for
“Windows” but later re-assigned to “Linux”.

2. Importance of items. We can additionally infer the impor-
tance of individual items. Let Q1(i) be the number of times
that item i was selected in question Q1, and Q2(i) the same
for question Q2. Then the importance of item i corresponds
to the likelihood that item i is selected in Q2 when it is se-
lected in Q1.

Importance(i) =
Q2(i)
Q1(i)

2.2 Survey Results
In this section, we discuss our findings from the survey responses.
To recall, we received a total of 48 responses until July 22, 2007.
The results are summarized in Table 1. Responses for each item are
annotated as bars (), which can be broken down into their
constituents and interpreted as below:

Response Category

All 48 responses
Number of responses for Q1
Number of responses for Q1 and Q2
Number of responses for Q1 and not Q2

The width of each bar accounts for the 48 responses received. The
coloured part denotes the count of responses for the relevant item in
question Q1; and the black part of the bar denotes the count of re-
sponses for the relevant item in question Q2 (and Q1∩Q2). Larger
proportions of the black bar in comparison to the grey bar indicate
higher importance of the corresponding item. The importance as a
percentage is also listed in parentheses after every item in Table 1.

Used Contents of Bug Reports.
Most important were steps to reproduce; they were selected as use-
ful by 47 responders (all but one) and 42 selected them to be among
the three most useful elements in a bug report (importance 89%).
Second and third in importance are stack traces and screenshots,
again selected as important by a substantial majority of respon-
ders. Interesting surprises in these results are the relative unimpor-
tance of items such as expected behaviour, summary and manda-
tory fields such as version, operating system, and product.

We advise caution when interpreting these results: items with a
low importance in our survey are not totally irrelevant because they
still might be needed to understand, reproduce, or triage a bug.

Problems with Bug Reports.
The most severe problems for ECLIPSE developers are errors in
steps to reproduce (importance 82%), incomplete information (im-
portance 77%), and wrong observed behaviour (importance 66%).

A very interesting observation is for duplicates: while 31 respon-
ders encountered duplicates, only two ranked them as most prob-
lematic. Possibly, developers can easily recognize duplicated bug
reports or sometimes even benefit by a different bug description.

The low occurrence of spam is not surprising: in BUGZILLA re-
porters have to register before they can submit bug reports, which
successfully prevents spam. Lastly, errors in stack traces are infre-
quent, likely because they are copy-pasted into bug reports.

Developer Comments.
We received a total of fourteen comments by the responding de-
velopers. Most comments stressed the importance of a complete,
correct, and clearly written bug description (see Table 1 for a selec-
tion). However, some comments revealed additional problems:

Different knowledge levels. “In OSS, there is a big gap with the
knowledge level of bug reporters. Some will include exact
locations in the code to fix, while others just report a weird
behavior that is difficult to reproduce.”

Netiquette. “Another aspect is politeness and respect. If people
open rude or sarcastic bugs, it doesn’t help their chances of
getting their issues addressed.”

Complicated steps to reproduce. This problem was pointed out
by several developers: “If the repro steps are so complex that
they’ll require more than an hour or so (max) just to set up
would have to be quite serious before they’ll get attention.”
Another one: “This is one of the greatest reasons that I post-
pone investigating a bug. . . if I have to install software that I
don’t normally run in order to see the bug.”

Also the developers pointed out situations in which bug reports get
preferred treatment.

Human component. “Another import thing is that devs know you
(because you have filed bug reports before, you discussed
with them on IRC, conferences, . . .)”

Keen bug reporters. A developer wrote about reporters who iden-
tify offending code: “I feel that I should at least put in the
amount of effort that they did; it encourages this behavior.”

Serious bugs. “For me it amounts to a consideration of ‘how seri-
ous is this?’ vs ‘how long will it take me to find/fix it?’. Se-
rious defects get prompt attention but less important or more
obscure defects get attention based on the defect clarity.”

3. RATING BUG REPORTS
Once developers completed the questionnaire, we asked them to
rate the quality of randomly selected bug reports. This part was vol-
untary and we therefore did not mention it in the invitation email.

Rating Infrastructure.
The rating system was inspired by rating sites on the Internet such
as RateMyFace and HotOrNot. We drew a random sample of 100

Figure 2: Screenshot of Rating Bugs’ Quality Interface

bugs from the ECLIPSE bug database, which we presented one-by-
one to the participants in a random order. They were required to
read through the bug report and rate it on a five-point Likert scale
ranging from very poor (1) to very good (5) (see Figure 2 for a
screenshot). Once they rated a bug report, the screen showed the
next bug report and a summary of the previously rated bug (on the
left side). Developers could stop after any bug report. Having bug
reports with a rating of quality, helps us with the following:

1. They allow us to verify the results of the questionnaire on
concrete examples, i.e., whether reports with highly desired
elements are rated higher for their quality and vice versa.

2. We can use the rated bug reports to build and evaluate tools
that predict the quality of bug reports. In Section 4, we
present quZILLA, a prototype for such a tool.

Rating Results.
We received 397 votes for the sample of 100 bugs; 96 bug reports
were rated by at least two unique responders. Table 2 lists the bug
reports that had the highest and lowest average ratings. Bugs re-
ports can be of exceptional quality, such as bug report #31021 for
which both responders awarded a score of very good.

I20030205

Run the following example. Double click on a tree item and
notice that it does not expand.

Comment out the Selection listener and now double click on
any tree item and notice that it expands.

public static void main(String[] args) {
Display display = new Display();
Shell shell = new Shell(display);
[. . .] (21 lines of code removed)
display.dispose();

}
(ECLIPSE bug report #31021)

On the other hand, bug report #175222 with an average score of 1.5
is of fairly poor quality.

I wand to create a new plugin in Eclipse using CDT. Shall it
possible. I had made a R&D in eclipse documentation. I had
get an idea about create a plugin using Java. But i wand to
create a new plugin (user defined plugin) using CDT. After
that I wand to impliment it in my programe. If it possible?.
Any one can help me please...

(ECLIPSE bug report #175722)

Contents of bug reports.
product (0%) hardware (0%) observed behavior (27%) screenshots (40%)
component (0%) operating system (0%) expected behavior (7%) code examples (23%)
version (2%) summary (8%) steps to reproduce (89%) error reports (9%)
severity (0%) build information (8%) stack traces (77%) test cases (28%)

Problems with bug reports.
You were given wrong: There were errors in: The reporter used: Others:

product name (0%) code examples (18%) bad grammar (17%) duplicates (6%)
component name (9%) steps to reproduce (82%) unstructured text (26%) spam (0%)
version number (28%) test cases (28%) prose text (8%) incomplete information (77%)
hardware (0%) stack traces (0%) too long text (18%) viruses/worms
operating system (25%) non-technical language (21%)
observed behavior (66%) no spellcheck (0%)
expected behavior (22%)

Selected comments.
Incomplete information is the biggest problem. Usually if someone pro-
vides steps to reproduce, stack traces, observed behavior, etc., it is helpful
even if the grammar or language is not so great.
—
The most annoying problem is too brief bug description.
—
Using Bug report template for bug Description would be helpful, I think.

The most important info that a reporter can provide is a way to reliably
reproduce the problem.
—
Really good bug reports will:
1) describe the difference between the observed and expected behaviors
2) have -clear-, fairly simple, repro steps
3) Provide stack traces and/or screen shots supporting the above info.

Table 1: The results of the questionnaire. Overall 48 out of 336 contacted ECLIPSE developers responded.

Bug Report Votes Rating

Tree - Selection listener stops default expansion (#31021) 2 5.00
JControlModel "eats up" exceptions (#38087) 4 4.75
Search - Type names are lost [search] (#42481) 4 4.50
150M1 withincode type pattern exception (#83875) 4 4.50
ToolItem leaks Images (#28361) 5 4.40
.
Outline view should [...] show all project symbols (#108759) 2 2.00
Selection count not updated (#95279) 3 2.00
Pref Page [...] Restore Defaults button does nothing (#51558) 5 1.80
[...]<Incorrect /missing screen capture> (#99885) 4 1.75
Create a new plugin using CDT. (#175222) 6 1.50

Table 2: Developers rated the quality of ECLIPSE bug reports.

Overall, the agreement among developers on the quality of indi-
vidual bug reports was rather strong. For only 22 bugs, the ratings
awarded by developers had a standard deviation greater than one
(max. being 1.5).

4. THE QUZILLA TOOL
Besides asking developers about bug quality issues, we developed
a prototype tool — ‘quZILLA’, to automatically measure the de-
scription quality of a bug report. quZILLA is based on the ECLIPSE
guidelines on how to write good bug reports [7]. The tool is imple-
mented in PYTHON and uses the NLTK toolkit for Natural Language
Processing (NLP) [11]. Bug descriptions are given as input, which
are first preprocessed by tokenization (splitting the text into single
words/tokens) and stemming (reducing words to their stem form).
Then, quZILLA determines a quality score using the following cri-
teria:

• How readable is the bug description? We regard the read-
ibility of a bug report high if it contains a blank line every
three to six lines. If so, it achieves 20 points. We considered
these numbers useful while reading technical short instruc-
tions, such that texts do not appear as one huge block. Ad-
ditionally, we considered enumerations to enhance readibil-
ity. We determined enumerations in the reports by checking
whether several subsequent lines contain a character like "-",

"*" or enumerations such as "1), 2)" in the beginning. If
present, the bug report was awarded another 30 points.

• Are specific keywords present? Some keywords hint at im-
portant information, like reproduce may hint at the presence
of steps to reproduce. Other examples of keywords include
stack trace, screenshot, exception, behaviour, runtime, and
violation. Depending upon the number of keywords present,
up to 60 points are awarded to the report.

• Does the bug description contain code examples? This is
measured by checking for keywords that may hint at program
code. We award 15 points if any code keyword is found.

The maximum score a bug report can achieve is 125. For evalua-
tion, we compared the quality score delivered by quZILLA for the
bugs presented to developers in the survey to the scores awarded by
developers themselves.

Our results are presented in Table 3. The rows represent scores
determined by quZILLA (predicted) and the columns represent av-
erage developer ratings (observed). We mapped the scores by
quZILLA to the Likert scale keeping in mind that the prototype
currently computes the final score additively for information items
individually instead of looking for classes of information. The re-
sults across the diagonal (dark gray background) currently show
a fair degree of agreement between quZILLA and developers ac-
counting for 42% of the bugs. Additionally, for over 90% bugs,
the tool and developers agreed within one interval from each other
(light gray background). The results warrant further improvements
to quZILLA which can be achieved by improving the detection of
information in the reports and reviewing the scoring mechanism.

5. RELATED WORK
To our knowledge, no other work has specifically studied the qual-
ity of bug reports or suggested a quality-meter tool for bug reports.

Several studies used bug reports to automatically assign devel-
opers to bug reports [2, 4], assign locations to bug reports [3], track
features over time [6], recognize bug duplicates [5, 12], and predict
effort for bug reports [13]. All these approaches should benefit by

Observed
Predicted very poor poor medium good very good

very poor [0, 4] 0 0 0 0 0
poor [5, 12] 0 1 2 1 0
medium [13, 33] 0 5 21 12 0
good [34, 90] 1 5 20 18 3
very good [91, 125] 0 0 3 6 2

Table 3: The results of the classification by quZILLA compared
to the developer rating.

our measure for the quality of bug reports since training only with
high-quality bug reports will likely improve their predictions.

In order to inform the design of new bug reporting tools, Ko et
al. [9] conducted a linguistic analysis of the titles of bug reports.
They observed a large degree of regularity and a substantial num-
ber of references to visible software entities, physical devices, or
user actions. Their results suggest that future bug tracking systems
should collect data in a more structured way.

In 2004, Antoniol et al. [1] pointed out the lack of integration
between version archives and bug databases. Providing such an
integration allows queries to locate the most faulty methods in a
system. While the lack of integration was problematic a few years
ago, things have changed in the meantime: the Mylar tool by Ker-
sten and Murphy [8] allows to attach a task context to bug reports
so that changes can be tracked on a very fine-grained level.

6. CONCLUSION AND CONSEQUENCES
Well written bug reports are likely to get more attention among de-
velopers than poorly written ones. In order to get a notion of bug
report quality from the point of view of developers, we conducted a
survey among ECLIPSE developers. The results suggest that steps to
reproduce and stack traces are most useful in bug reports. The most
harmful problems encountered by developers are errors in steps to
reproduce, incomplete information, and wrong observed behavior.
Surprisingly, bug duplicates are encountered often but not consid-
ered as harmful by developers.

Additionally, the ECLIPSE developers classified 100 bug reports
on a scale from one (poor quality) to five (excellent quality). Based
on the results from the survey, we constructed a measure of bug
report quality that was able to classify 42% of the bugs correctly.
In the long term, having an automatic measure of bug report quality
can ensure that new bug reports meet a certain quality level and
serve as a data cleaning technique for research on bug reports. Our
future work is thus as follows:

Collect more data. We are currently posting our survey to the de-
velopers of the APACHE, JBOSS, and MOZILLA projects. Ad-
ditionally, we will target bug reporters in order to find out
which information is difficult to provide. By combining the
results from both surveys, we might be able to propose new
tools for bug reporting.

Immediate feedback to reporter. When a user is reporting a new
bug, we can give her immediate feedback on the quality of
her report in form of a quality meter: while the user is typing
a reports, the color of the meter indicates its quality. By tak-
ing historic data into account, we can encourage the reporter
further: “Bug reports with stack traces have been fixed twice
as fast,” or “Add a screenshot to increase your quality by 20.”

To learn more about our work in mining software archives, visit

http://www.softevo.org/

Acknowledgments. Many thanks to Harald Gall, Christian Lindig,
Stephan Neuhaus, Andreas Zeller, and the anonymous ETX review-
ers for their valuable discussions and helpful suggestions on earlier
revisions of this paper. A special thanks to all ECLIPSE developers
who responded to our survey. When this research was carried out,
Thomas Zimmermann was with Saarland University and funded by
the DFG Research Training Group “Performance Guarantees for
Computer Systems”.

7. REFERENCES
[1] G. Antoniol, H. Gall, M. D. Penta, and M. Pinzger. Mozilla:

Closing the circle. Technical Report TUV-1841-2004-05,
Technical University of Vienna, 2004.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE ’06: Proceeding of the 28th International
Conference on Software Engineering, pages 361–370, 2006.

[3] G. Canfora and L. Cerulo. Fine grained indexing of software
repositories to support impact analysis. In MSR ’06:
Proceedings of the 2006 International Workshop on Mining
Software Repositories, pages 105–111, 2006.

[4] G. Canfora and L. Cerulo. Supporting change request
assignment in open source development. In SAC ’06:
Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 1767–1772, 2006.

[5] D. Cubranic and G. C. Murphy. Automatic bug triage using
text categorization. In SEKE 2004: Proceedings of the
Sixteenth International Conference on Software Engineering
& Knowledge Engineering, pages 92–97, 2004.

[6] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE
2003), 13-16 November 2003, Victoria, Canada, pages
90–101, 2003.

[7] E. Goldberg. Bug writing guidelines.
https://bugs.eclipse.org/bugs/bugwritinghelp.html. Last
accessed 2007-08-04.

[8] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2006), pages 1–11, 2006.

[9] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis
of how people describe software problems. In Proceedings of
the 2006 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2006), pages 127–134,
2006.

[10] R. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 140:1–55, 1932.

[11] NLTK toolkit for natural language processing.
http://nltk.sourceforge.net. Last accessed 2007-08-04.

[12] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 499–510, 2007.

[13] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How
long will it take to fix this bug? In MSR ’07: Proceedings of
the Fourth International Workshop on Mining Software
Repositories, 2007.

