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SECTION 9.2: ARITHMETIC SEQUENCES and PARTIAL SUMS

PART A: WHAT IS AN ARITHMETIC SEQUENCE?

The following appears to be an example of an arithmetic (stress on the “me”) sequence:

   

a
1
= 2

a
2
= 5

a
3
= 8

a
4
= 11



We begin with 2. After that, we successively add 3 to obtain the other terms of the
sequence.

An arithmetic sequence is determined by:

• Its initial term

Here, it is   a1
, although, in other examples, it could be   a0

 or something else.

Here,   a1
= 2 .

• Its common difference

This is denoted by  d . It is the number that is always added to a previous
term to obtain the following term. Here,   d = 3.

Observe that: 
    
d = a

2
− a

1
= a

3
− a

2
= … = a

k+1
− a

k
k ∈Z+( ) = …

The following information completely determines our sequence:

The sequence is arithmetic.
(Initial term)   a1

= 2

(Common difference)   d = 3
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In general, a recursive definition for an arithmetic sequence that begins with   a1
 may be

given by:

  

a
1
 given

a
k+1

= a
k
+ d k ≥ 1; "k  is an integer" is implied( )

⎧
⎨
⎪

⎩⎪

Example

The arithmetic sequence 25, 20, 15, 10, …
can be described by:

  

a
1
= 25

d = −5

⎧
⎨
⎪

⎩⎪
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PART B : FORMULA FOR THE GENERAL nth  TERM OF AN

ARITHMETIC SEQUENCE

Let’s begin with   a1
 and keep adding  d  until we obtain an expression for  an

, where

  n ∈Z+ .

   

a
1
= a

1

a
2
= a

1
+ d

a
3
= a

1
+ 2d

a
4
= a

1
+ 3d



a
n
= a

1
+ n −1( )d

The general   n
th term of an arithmetic sequence with initial term   a1

 and

common difference  d  is given by:

  
a

n
= a

1
+ n −1( )d

Think: We take   n −1 steps of size  d  to get from   a1
 to  an

.

Note: Observe that the expression for  an
 is linear in n. This reflects the fact that

arithmetic sequences often arise from linear models.

Example

Find the 100th term of the arithmetic sequence: 2, 5, 8, 11, …
(Assume that 2 is the “first term.”)

Solution

  

a
n
= a

1
+ n −1( )d

a
100

= 2 + 100 −1( ) 3( )
= 2 + 99( ) 3( )
= 299



 (Chapter 9: Discrete Math)  9.14

  

PART C : FORMULA FOR THE nth  PARTIAL SUM OF AN

ARITHMETIC SEQUENCE

The   n
th partial sum of an arithmetic sequence with initial term   a1

 and

common difference d is given by:

  
S

n
= n

a
1
+ a

n

2

⎛

⎝⎜
⎞

⎠⎟

Think: The (cumulative) sum of the first n terms of an arithmetic sequence is given
by the number of terms involved times the average of the first and last terms.

Example

Find the 100th partial sum of the arithmetic sequence: 2, 5, 8, 11, …

Solution

We found in the previous Example that:   a100
= 299

  

S
n
= n

a
1
+ a

n

2

⎛

⎝⎜
⎞

⎠⎟

S
100

= 100( ) 2 + 299

2

⎛
⎝⎜

⎞
⎠⎟

= 100( ) 301

2

⎛
⎝⎜

⎞
⎠⎟

= 15,050

i.e.,  2 + 5+ 8 + ...+ 299 = 15,050

This is much easier than doing things brute force on your calculator!

Read the Historical Note on p.628 in Larson for the story of how Gauss quickly

computed the sum of the first 100 positive integers, 
  

k
k=1

100

∑ = 1+ 2 + 3+ ...+100 . Use our

formula to confirm his result. Gauss’s trick is actually used in the proof of our formula;
see p.694 in Larson. We will touch on a related question in Section 9.4.
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SECTION 9.3: GEOMETRIC SEQUENCES, PARTIAL SUMS, and
SERIES

PART A: WHAT IS A GEOMETRIC SEQUENCE?

The following appears to be an example of a geometric sequence:

   

a
1
= 2

a
2
= 6

a
3
= 18

a
4
= 54



We begin with 2. After that, we successively multiply by 3 to obtain the other terms of
the sequence. Recall that, for an arithmetic sequence, we successively add.

A geometric sequence is determined by:

• Its initial term

Here, it is   a1
, although, in other examples, it could be   a0

 or something else.

Here,   a1
= 2 .

• Its common ratio

This is denoted by r. It is the number that we always multiply the previous
term by to obtain the following term. Here,   r = 3.

Observe that: 
    
r =

a
2

a
1

=
a

3

a
2

= … =
a

k+1

a
k

k ∈Z+( ) = …

The following information completely determines our sequence:

The sequence is geometric.
(Initial term)   a1

= 2

(Common ratio)   r = 3
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In general, a recursive definition for a geometric sequence that begins with   a1
 may be

given by:

  

a
1
 given

a
k+1

= a
k
⋅ r k ≥ 1; "k  is an integer" is implied( )

⎧
⎨
⎪

⎩⎪

We assume   a1
≠ 0  and   r ≠ 0 .

Example

The geometric sequence 2, 6, 18, 54, …
can be described by:

  

a
1
= 2

r = 3

⎧
⎨
⎪

⎩⎪
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PART B : FORMULA FOR THE GENERAL nth  TERM OF A

GEOMETRIC SEQUENCE

Let’s begin with   a1
 and keep multiplying by  r  until we obtain an expression for  an

,

where   n ∈Z+ .

   

a
1
= a

1

a
2
= a

1
⋅ r

a
3
= a

1
⋅ r 2

a
4
= a

1
⋅ r3



a
n
= a

1
⋅ r n−1

The general   n
th term of a geometric sequence with initial term   a1

 and

common ratio  r  is given by:

  an
= a

1
⋅ r n−1

Think: As with arithmetic sequences, we take   n −1 steps to get from   a1
 to  an

.

Note: Observe that the expression for  an
 is exponential in n. This reflects the fact

that geometric sequences often arise from exponential models, for example those
involving compound interest or population growth.
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Example

Find the 6th term of the geometric sequence: 2,  −1, 
 

1

2
, …

(Assume that 2 is the “first term.”)

Solution

Here,   a1
= 2  and 

  
r = −

1

2
.

  

a
n
= a

1
⋅ r n−1

a
6
= 2( ) −

1

2

⎛
⎝⎜

⎞
⎠⎟

6−1

= 2( ) −
1

2

⎛
⎝⎜

⎞
⎠⎟

5

= 2( ) −
1

32

⎛
⎝⎜

⎞
⎠⎟

= −
1

16

Observe that, as  n→∞ , the terms of this sequence approach 0.

Assume   a1
≠ 0 . Then, 

   

a
1
⋅ r n−1 → 0  as  n→∞( ) ⇔ −1< r < 1( )

i.e., r <1
  
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PART C : FORMULA FOR THE nth  PARTIAL SUM OF A

GEOMETRIC SEQUENCE

The   n
th partial sum of a geometric sequence with initial term   a1

 and common ratio  r

(where   r ≠ 1) is given by:

  
S

n
=

a
1
− a

1
r n

1− r
or a

1

1− r n

1− r

⎛

⎝⎜
⎞

⎠⎟

You should get used to summation notation:

Remember that  Sn
 for a sequence starting with   a1

 is given by:

   
S

n
= a

k
k=1

n

∑ = a
1
+ a

2
+…+ a

n

Because   ak
= a

1
⋅ r k−1  for our geometric series:

   

S
n
= a

1
r k−1

k=1

n

∑ = a
1
+ a

1
r

a2

 + a
1
r 2

a3

 + ... + a
1
r n−1

an



=
a

1
− a

1
r n

1− r
according to our theorem in the box above( )

Note: The book Concrete Mathematics by Graham, Knuth, and Patashnik
suggests a way to remember the numerator: “first in – first out.” This is
because   a1

 is the “first” term included in the sum, while   a1
r n  is the first

term in the corresponding infinite geometric series that is excluded from the
sum.

Technical Note: The key is that 
   
1+ r + r 2 +…+ r n−1 =

1− r n

1− r
. You can see that this

is true by multiplying both sides by 
  
1− r( ) . Also see the proof on p.694 of Larson.

Technical Note: If   r = 1, then we are dealing with a constant sequence and
essentially a multiplication problem. For example, the 4th partial sum of the series

 7 + 7 + 7 + 7 + ... is 
 
7 + 7 + 7 + 7 = 4( ) 7( ) = 28 . In general, the   n

th  partial sum of

the series   a1
+ a

1
+ a

1
+ ...  is given by   na

1
.
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Example

Find the 6th partial sum of the geometric sequence 2,  −1, 
 

1

2
, …

Solution

Recall that   a1
= 2  and 

  
r = −

1

2
 for this sequence.

We found in the previous Example that: 
  
a

6
= −

1

16

We will use our formula to evaluate:

  
S

6
= 2 − 1 +

1

2
−

1

4
+

1

8
−

1

16

Using our formula directly:

  
S

n
=

a
1
− a

1
r n

1− r
or a

1

1− r n

1− r

⎛

⎝⎜
⎞

⎠⎟

If we use the second version on the right …

  

S
n
= a

1

1− r n

1− r

⎛

⎝⎜
⎞

⎠⎟

S
6
= 2

1− − 1
2

⎛
⎝⎜

⎞
⎠⎟

6

1− − 1
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= 2
1− 1

64

1+ 1
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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= 2

63
64
3
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= 2
21 63

32
64

⋅
2

1

31

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 2
21

32 16

⎛

⎝
⎜

⎞

⎠
⎟

=
21

16

We can also use the first version and the “first in – first out” idea:

  
S

6
= 2 − 1 +

1

2
−

1

4
+

1

8
−

1

16

“First out” is: 
  
a

7
=

1

32

  

S
n
=

a
1
− a

1
r n

1− r

S
6
=

2 − 1
32

1− − 1
2

⎛
⎝⎜

⎞
⎠⎟

=

63
32
3
2

← 64
32

− 1
32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
21 63

16
32

⋅
2

1

31

=
21

16
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PART D: INFINITE GEOMETRIC SERIES

An infinite series converges (i.e., has a sum) ⇔  The  Sn
 partial sums approach a

real number 
  
as n→∞( ) , which is then called the sum of the series.

In other words, if 
  
lim
n→∞

S
n
= S , where  S  is a real number, then  S  is the sum of the series.

Example

Consider the geometric series: 
 

1

2
+

1

4
+

1

8
+

1

16
+ ...

Let’s take a look at the partial (cumulative) sums:

   

1

2
S1=

1
2


+

1

4

S2=
3
4

  

+
1

8

S3=
7
8

  

+
1

16

S4=
15
16

  

+ ...

It appears that the partial sums are approaching 1. In fact, they are; we will
have a formula for this. This series has a sum, and it is 1.

The figure below may make you a believer:
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Example

The geometric series  2 + 6 +18 + 54 + ...  has no sum, because: 
  
lim
n→∞

S
n
= ∞

Example

The geometric series  1−1+1−1+ ... has no sum, because the partial sums
do not approach a single real number. Observe:

   

1
S1=1
 − 1

S2=0
 

+ 1

S3=1
  

− 1

S4=0
  

+ ...

An infinite geometric series converges 

   

⇔ −1< r < 1( )
i.e., r <1
  

Take another look at the Examples of this Part.

It is true that an infinite geometric series converges ⇔  Its terms approach 0.

Warning: However, this cannot be said about series in general. For example, the

famous harmonic series 
   

1

kk=1

∞

∑ = 1+
1

2
+

1

3
+…  does not converge, even though the

terms of the series approach 0. In order for a series to converge, it is necessary but
not sufficient for the terms to approach 0.

No infinite arithmetic sequence (such as   2 + 5+ 8 +11+… ) can have a sum, unless
you include  0 + 0 + 0 + ... as an arithmetic sequence.
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The sum of a convergent infinite geometric series with initial term   a1
 and

common ratio  r , where 

   

−1< r < 1

i.e., r <1
   , is given by:

  
S =

a
1

1− r

Technical Note: This comes from our partial sum formula 
  
S

n
=

a
1
− a

1
r n

1− r
 and the

fact that 
  
a

1
r n → 0  as  n→ 0( )  if 

   

−1< r < 1

i.e., r <1
   .

Example

Write  0.81 as a nice (simplified) fraction of the form 
 

integer

integer
.

Recall how the repeating bar works:  0.81= 0.81818181...

Note: In Arithmetic, you learned how to use long division to express a
“nice” fraction as a repeated decimal; remember that rational numbers can
always be expressed as either a terminating or a “nicely” repeating decimal.
Now, after all this time, you will learn how to do the reverse!

Solution

 0.81 can be written as:  0.81+ 0.0081+ 0.000081+ ...

Observe that this is a geometric series with initial term   a1
= 0.81  and

common ratio 
  
r =

0.0081

0.81
=

1

100
= 0.01; because 

  
r < 1 , the series

converges.

The sum of the series is given by:

   
S =

a
1

1− r
=

0.81

1− 0.01
=

0.81

0.99
=

81

99
=

9
11
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Again, you should get used to summation notation:

  

S = a
1
r k−1

k=1

∞

∑

= 0.81( ) 0.01( )k−1

k=1

∞

∑

=
9

11

If you make the substitution   i = k −1, the summation form can be
rewritten as:

  

S = 0.81( ) 0.01( )k−1

k=1

∞

∑

= 0.81( ) 0.01( )i

i=0

∞

∑

In Calculus, 0 is more common than 1 as a lower limit of summation.


