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ABSTRACT 

The Software Requirements phase has notable importance, since 

it is responsible for the definition of the system itself. Several 

customers indicate which functionalities they want to be present 

in the software. However, constraints, such as budget, make it 

impossible to implement all desired requirements at once. One 

activity in this context is the release planning. The selection of 

which requirements should be implemented to the next release is 

necessary. In literature, metaheuristics have been employed to 

solve this problem. The objective of this work is to propose the 

use of exact optimization techniques in the problem, with the 

advantage that the resolution through these techniques ensures 

the best solutions. The results in several experiments show the 

validity of such application, in comparison with the 

metaheuristics approach.   

General Terms 

Exact Optimization, Software Requirements, Software 

Engineering. 

Keywords 

Search Based Software Engineering, Next Release Planning, 

Software Requirements. 

1. INTRODUCTION 
The software engineering plays an important role in the 

development of quality systems. Through decades of research, 

models and methodologies have been defined in order to support 

the software development process [1], considering that the final 

product quality is strongly related to the quality of the 

development process [2].  

Unfortunately, such methodologies may not be appropriate to 

solve some software development problems, mainly in 

inherently complex problems. In those cases, automated 

methods should be used in order to solve the problems 

efficiently. 

One important area in the software development process is the 

requirements engineering. This phase contains problems of high 

complexity, such as the Next Release Problem (NRP) [3]. This 

problem concerns on defining which requirements should be 

implemented for the next version of the system, according to 

customer satisfaction and budget constraints. Metaheuristics 

have been used to solve the problem, and so far the definition of 

the best solutions could not be guaranteed. 

This paper proposes the resolution of the problem through exact 

techniques. We aim to find better solutions to the software 

development process, which is crucial to the area [4]. The 

research questions to be investigated are: 

• Exact Optimization Applicability: Can exact techniques be 

applied to the problems? 

• Exact Optimization Efficiency: Is exact optimization execution 

time an issue? 

In order to answer those questions, we perform both 

effectiveness and efficiency comparison among exact techniques 

and metaheuristics to some instances of the problem. The 

instances were set in different sizes, in order to represent various 

contexts of application. 

2. RELATED WORK 
The Next Release Problem (NRP) was originally considered in 

2001 using as objective function the maximization of customers’ 

satisfaction [3]. The authors applied optimization techniques in 

five instances of the problem, and they considered three budget 

constraint scenarios: 30%, 50% and 70% of the total cost of all 

requirements. The authors employed the metaheuristics 

Simulated Annealing, Hill-Climbing, and a greedy technique. In 

the experiments it was found that Simulated Annealing 

technique yielded better results in comparison with other 

techniques. 

In contrast to the previous related work, the main contribution of 

this work is to model and solve the NRP through exact 

optimization technique. Such an approach encourages the 

potential use of exact techniques on other problems of Software 

Engineering. It also plays as a contribution the reinforcement of 

the use of Operations Research techniques in Software 

Engineering contexts, indicating a cross-disciplinary approach. 

The NRP was revisited in 2007, and a multiobjective 

formulation of maximization of customers’ satisfaction and 

minimization of the implementing cost was taken [5]. In the 

paper, the customers’ satisfaction function considers not only 

the importance of each client, but also the importance level that 

each customer has for each requirement. Multiobjective 

metaheuristic NSGA-II was able to solve the problem, though it 

could not guarantee the definition of the best set of solutions in 

the instances used. 

3. SEARCH BASED SOFTWARE 

ENGINEERING 
Software Engineering, as an engineering discipline, is a field 

with mathematical aspects and problems [6]. Additionally, as 

any engineering field, there are scenarios to optimize. An 

efficient way to solve this kind of problem, usually with 
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structural complexity and constraints, is an automated 

optimization approach [7]. 

The first step in this direction in software engineering was in 

1976, where the problem of generating test data was attacked by 

numerical maximization [8]. Since 2001, however, this new 

approach to software engineering, know as Search based 

Software Engineering (SBSE), researchers and experts have 

intensified the modeling of Software Engineering problems as 

optimization problems [9].  

The requirements engineering is a stage in which the software 

itself is defined, and therefore the activities performed at this 

point have an impact on all phases of development. Due to 

budget constraint, it is usually not possible to implement all the 

desired features. Thus, the selection of which requirements must 

be implemented consists of a relevant task in this phase. This 

problem can be tackled as an optimization problem. 

The mathematical optimization problems are those with 

functions to be maximized or minimized and defined from 

coefficients and variables. The variables that define the 

functions may be subject to restrictions, i.e., the variables must 

satisfy a set of defined equations according to each instance of 

the problem. Formally, the optimization problem is defined as: 

)}(...,),(),({ 21 xfxfxfMinimize k  
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In the mono-objective optimization, the search for solutions is 

performed according to the values of only one function. Thus, in 

a minimization problem, for example, if we take a solution A 

with function value less than the value of a solution B, then A is 

better than B. 

3.1 Problem Definition 
The mono-objective requirements selection [3] is defined by the 

following aspects: 

 Customers: Consider a set C = {c1, c2, .... , cm} with m 

customers. Each client i has an importance value wi. Each 

client indicates a list with the requirements desired. 

 Requirements: Given a set R = {r1, r2, .... , rn} with n 

requirements. Each requirement j has an implementation 

cost costj, such as man-hours. The requirements also have 

a precedence relation, since some requirements depend on 

the implementation of others.  

 Company: The development company has a maximum 

budget available B for use by the next version.  

The mathematical formulation of mono-objective NRP is as 

follows: 
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The Boolean variable Xi indicates the selection state of customer 

i. If customer ci is fully satisfied (all his desired requirements are 

selected), then Xi is 1. As shown in (1), the requirements 

selection considers maximizing the sum of importance of such 

customers. The Boolean variable Yj represents the selection state 

of requirement j: Yi  is 1 if the requirement i is selected, and 0 

otherwise.  In (2), the restriction states that the selection is 

limited by the budget B.  

The restriction (3) indicates the dependence relation among the 

requirements. Consider that some requirement rj depends on 

other ri. Therefore, in order to rj be selected (Yi = 1), Xi has to 

be greater or equal than 1, which in the binary context means 

that it is 1, i.e.,  requirement ri is also selected in the solution. 

The Figure 1 presents an example of the NRP structure, with 20 

requirements (r1.to r20) and 10 customers (other c1 to c10). The 

links between requirements are the dependency relation. 

 

Fig 1: NRP illustrative example. 

4. METHODS 

4.1 Metaheuristics 
The term metaheuristic [10] represents a class of generic search 

algorithms. These methods use ideas from various fields as 

inspiration to the process of trying to solve optimization 

problems. Metaheuristics approaches attempt to solve the 

problem by intelligently visiting only some solutions, but there 

is no guarantee that the best solution is returned. The following 

are summary on the mono-objective metaheuristics used. 

 Simulated Annealing: The metaheuristic Simulated 

Annealing [11] is based on a physical process that occurs in 

the metals metallurgy. In the tempering process, a material 

is heated to high temperatures and, thereafter, is cooled so 

that at the end of the process the material is crystallized in a 

state of minimal energy. The relation with the mathematical 

optimization is the minimization of the objective function 
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value from the solutions found during the search process. 

The Simulated Annealing algorithm allows the acceptance 

of solutions that will not improve the value of the function. 

These acceptances against the objective are controlled by a 

statistical equation defined in the actual physical process. 

In summary, the algorithm works as follows: if the new 

solution is better than the current solution, then it is 

accepted, otherwise, if the new solution worsens the 

objective, then it is accepted with a certain probability 

defined in terms of difference between the solutions, the 

current value of the variable temperature and constant 

physical. Figure 2 next simulates how the Simulated 

Annealing works in a minimization problem. 

 

Fig 2: Simulated Annealing search procedure. 

 Genetic Algorithms: The metaheuristic Genetic 

Algorithms [12] uses concepts of genetics, such as 

population and mutation. The metaheuristic can be defined 

in terms of two genetic operations: crossover, in which the 

structural information of two solutions are crossed to 

generate two new solutions; and the mutation process by 

which some random changes may occur in the solutions 

generated. The mutation is used in order to avoid the 

generation of the same solutions, and therefore to explore 

various search spaces. In summary, the current solutions 

are evaluated to determine which will continue to the next 

iteration ("generation"). Thus, the solutions are 

continuously selected according to performance in relation 

to the objective function. As new solutions are generated 

from these solutions that have been selected, the process 

"evolve" in order to generate better solutions. 

4.2 Exact Optimization 
The exact techniques are methods that use mathematical 

operations in order to solve the problem. The most known 

method for problems with linear both functions and constraints 

is the simplex method [13]. This method uses the formulation of 

the problem in matrix form, and applies matrix mathematical 

operations to achieve the global optimum, if any. The method is 

based on the geometric representation of the optimization 

problem in which the linear equations form a "polytope" in the 

search space. According to theorems in the field of linear 

programming, the optimal solution of the optimization problem 

is found in one of the vertices of the polytope considered as the 

system of linear equations of the formulation. Thus, from a valid 

initial solution, usually at the origin of space, the simplex 

method visits the adjacent vertices in the search for better values 

for the objective function. This approach is also based on the 

argument that indicates that the number of vertices of the 

polytope to a linear optimization problem is a finite number, and 

so the search will eventually end. 

The process of visiting the adjacent vertices until it finds the 

global optimum is achieved by matrix operations including the 

exchange between the basic variables of the system of equations. 

This is accomplished by manipulation of the equations of the 

linear system that represents the model. In this work, the version 

used is the revised Simplex in the product form of inverse. For 

solving Integer Programming, the method used is Branch-and-

Bound. This approach first solves the problem by using linear 

methods or nonlinear (depending on the problem treated) 

without the restriction of the integer solution in order to find the 

limits (bounds) of the solution. Additionally, the problem is 

divided into sub-problems in a tree structure (branch) in 

accordance with divisions of the domains of variables, and the 

divisions that are worse than the limit are discarded. The process 

is performed until the sub-problems have been considered. 

 

5. METHODOLOGY 

5.1 Instances 
We generated random data sets for the simulation of various 

contexts. Although they are artificial data, this does not affect 

the present analysis, given that the data represent a random 

simulation of a context where the problems can happen, and thus 

serve as a basis for simulation. For the mono-objective Next 

Release Problem (NRP), we generated five instances of different 

sizes.  

For the definition of the values domain, we followed the 

directions suggested in the original article that defined the 

problem [3]: 

• Customers’ value (w): 1 to 10 

• Requirements cost: depends on the level; 

–  1 to 5 for the basic requirements, 

–  2 to 8 for second level, 

–  5 to 10 for third level. 

• Number of basic requirements by customer: 1 to 2. 

 

Table 1 shows the characteristics of each instance. Figure 1 

shows the structure of instance  

 

Table 1. Instances used in experiments. 

Instance Requirements Customers 

NRP-A 20 10 

NRP-B 40 20 

NRP-C 100 50 

NRP-D  140 70 

NRP-E  200 100 
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Fig 3: Instance NRP-B, with 20 clients and 40 interdependent requirements. 

 

5.2 Resolution 
The resolution by metaheuristic is carried out with frameworks 

EasyMeta [14] for the mono-objective problem. The framework 

is implemented in JAVA language, and implements several 

metaheuristics algorithms. Since metaheuristic algorithms are 

non-deterministic, one execution is not enough to analyze its 

performance. So, each metaheuristic was executed 100 times. 

The results shown indicate the average of 100 runs, and the 

variation of standard deviation of the values of the objective 

function.  

The metaheuristics Simulated Annealing and Genetic 

Algorithms were chosen because of their widespread use in 

optimization problems. The configuration of genetic algorithms 

was cross-over rate of 0.9 and mutation rate of 5% (0.05). The 

maximum number of evaluations was 10,000, as well as in 

Simulated Annealing. These parameters were chosen by 

previous experimentation and tuning. A resolution by random 

approach was also performed. 

The resolution in exact optimization was performed, as the 

problem tackled in this paper is of integer programming, with 

Branch-and-Bound method [15]. 

Resolution by humans subjects were also carried out in order to 

validate the better result for the problem are found by the 

automated technique. The solutions of the experts were collected 

on forms specifically design for the task. In total, 21 people 

solved both NRP-A. In instances NRP-B the number of 

participants reached 13 software engineering specialists [16]. 

For the other instances of the problems the resolution was not 

carried out by specialists, because of the high complexity of 

such instances. The analysis presented next was based on the 

average value and standard deviation of the objective function 

among the solutions of the participants. 

6. RESULTS 

6.1 Solutions 
The results of the instances NRP-A and NRP-B are presented 

initially, because these are the ones that have answers of all 

techniques, including experts, which answered to the scenario of 

70% of budget. The Table 2 shows the values of the objective 

function (to be maximized) for these results. 

Table 2. Results for NRP-A and NRP-B with 70%. 

Method NRP-A 70% NRP-B 70% 

Exact Technique 27 96 

Genetic Algorithm 26.45±0.500 95.41±0.190 

Simulated Annealing 25.74±0.949 90.47±7.023 

Human Experts 16.19±6.934 77.85±13.459 

Random 15.03±5.950 45.74±11.819 

 

The results from Exact Optimization and Metaheuristics are 

similar. Genetic Algorithm performed 2.03% worse than exact 

technique in NRP-A, and 0.61% in NRP-B. The Simulated 

Annealing metaheuristic was 4.67% and 5.76% worse in NRP-A 

and NRP-B, respectively. 

However, the main information in Table 2 is the results achieved 

by experts. In the instance NRP-A, the average objective 

function value was 16.19, whilst the global optimum found by 

the exact optimization is 27. Thus, the average solution of 

specialists was 40.74% worse. In the instance NRP-B, the 

average of the experts was 18.90% worse when compared to the 

optimal solution found by exact optimization. The results 

indicate the validity of the use of automated optimization 

techniques to solve this problem and, as expected, the best 

results are obtained by exact optimization. 
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Table 3 below shows the results for the instance NRP-C for the 

three scenarios, 30%, 50% and 70% of budget. In such instance, 

as well as for NRP-D and NRP-E, the experiments were 

performed with the exact optimization and metaheuristics. 

Table 3. Results for NRP-C, for 30%, 50% and 70%. 

Method 
NRP-C 

30% 
NRP-C 50% NRP-C 70% 

Exact 

Technique 
96 146 206 

Genetic 

Algorithm 
80.45±9.34 124.25±9.60 199.07±4.37 

Simulated 

Annealing 
71.89±9.50 107.00±10.69 170.63±13.11 

 

The results confirm that the exact optimization finds the best 

solutions to the problem. As for the behavior related to budget 

scenarios, the metaheuristics achieve worse results for scenarios 

with restricted available budget. For example, in the instance 

NRP-C, the average objective function values of genetic 

algorithms compared to the exact optimization are 3.36% lower 

in the case of budget 70%, 14.89% worse for the scenario of 

50%, and 16.19% lower in the case of 30%. Therefore, the use 

of exact optimization is even more valid in practical contexts 

with more restricted budget. For Simulated Annealing, the 

results are: 17.17%, 26.71%, and 25.11% worse than exact 

optimization in scenarios of 70%, 50% and 30% of budget, 

respectively. These values are presented below in Figure 4 for 

visualization. 

Fig 4: Results for metaheuristics against exact in NRP-C. 

From the Figure 4 it can be perceived the evolution of 

worsening of both the metaheuristics with the greater budget 

constraint. Another aspect observed is that between 70% and 

50% there is a major change in the variation of the techniques. 

Between 50% e 30%, however, a minor change occurs. This 

shows that the performance of the metaheuristics is strongly 

affected even by the reduction of 70% for 50%. This result 

shows the importance of exact optimization approach in the 

context. The values of the variations are: from 70% to 50%, 

Genetic Algorithm gets 343.15% worse and Simulated 

Annealing gets 55.56%. From 50% to 30% of budget, the values 

are -8.02% for Genetic Algorithm (the metaheuristic got better) 

and 6.37% for Simulated Annealing. 

In order to show the overall performance of the techniques, we 

also present the results for the bigger instances, The instance 

NRP-D, for example, is twice the size of the previous NRP-C. 

Table 4 next presents the results for NRP-D. 

Table 4. Results for NRP-D, for 30%, 50% and 70%. 

Method 
NRP-D 

30% 
NRP-D 50% NRP-D 70% 

Exact 

Technique 
128 205 278 

Genetic 

Algorithm 
87.60±13.91 160.88±16.92 270.70±15.17 

Simulated 

Annealing 
79.02±12.36 133.96±17.33 211.70±15.99 

 

As for NRP-C, the results for the instance NRP-D shows the 

better performance of exact techniques. Regarding the behavior 

to budget scenarios, the metaheuristics also achieve worse 

values compared to the exact optimization by the increase in the 

restriction of the budget. The average results of genetic 

algorithms are 2.62%, 21.52% and 31.56 worse in the limits of 

70%, 50%, and 30%, respectively. The Simulated Annealing had 

the following results of worse variations than exact 

optimization: 23.84%, 34.65%, and 38.26 in scenarios of 70%, 

50% and 30% of budget. So, in this instance it is also applicable 

the fact that the use of exact optimization is valid in practical 

contexts, because they may eventually present restricted budget. 

As done for NRP-C, the Figure 5 shows these values for better 

visualization. 

Fig 5: Results for metaheuristics against exact in NRP-D. 

The Figure 5 indicates a growth of worsening more smooth than 

Figure 4. It indicates that for an instance with the twice size, the 

metaheuristics stated to show a regular level of worsening with 

more constrained scenarios. Despite that, the minor variation 

between 70% and 50% compared to that between 50% and 30% 

also happens in NRP-D. This result reinforces the importance of 

exact optimization in the problem. The values for variations for 

Genetic Algorithm are: from 70% to 50%, 721.37% worse and 

from 50% to 30%, it is 46.65% worse. Simulated Annealing gets 

45.34% between 70% and 50% of budget constraint, and 

10.41% for 50% and 30%. Another aspect is that in this case 

there was not a better result between 50% and 30%, as presented 

in the previous case.  



International Journal of Computer Applications (0975 – 8887) 

Volume 22– No.8, May 2011 

6 

Finally, the results for NRP-E are shown in Table 5 below. 

Table 5. Results for NRP-E, for 30%, 50% and 70%. 

Method NRP-E 30% NRP-E 50% NRP-E 70% 

Exact 

Technique 
205 299 314 

Genetic 

Algorithm 
177.09±9.60 293.94±3.19 313.85±0.41 

Simulated 

Annealing 
147.29±14.81 265.75±13.47 314.00±0.00 

 

The results for the NRP-E indicate the better performance of 

exact techniques in all scenarios. Despite the result for 

Simulated Annealing in the 70% constraint budget shows that 

the metaheuristic has achieved the best solution, the 

performance of exact optimization was better in all scenarios. 

The behavior regarding the budget scenarios is as follows: the 

Genetic Algorithm had in average results 0.04%, 1.69%, and 

13.61% worse in the limits of 70%, 50%, and 30%, respectively. 

The metaheuristic Simulated Annealing was worse than exact 

optimization by 0.00%, 11.37%, and 28.15% in scenarios of 

70%, 50% and 30% of budget. This result shows that, as for 

NRP-C and NRP-D, in NRP-E the metaheuristics got worse with 

the increase in the restriction of the budget. As for the previous 

instances, the Figure 6 shows the variation values. 

Fig 6: Results for metaheuristics against exact in NRP-E. 

 

6.2 Execution Time 
Beyond the analysis of accuracy of solutions, the runtime of 

executions of the techniques is also an aspect to be investigated. 

The time results shown below are presented in milliseconds. 

This data were collect from the metaheuristics by the average 

and standard deviation of 100 executions. In the exact technique, 

the time is of the only execution of the method. In the results for 

human subjects, the data were collected by the time the experts 

needed to resolve the problem. Then, the values were taken in 

average and standard deviation. While the other automated 

techniques used milliseconds or seconds of execution, the 

humans took minutes to solve the instances. This is why the 

values presented below for human are much greater than the 

values for the others techniques. 

Initially, the results of NRP-A and NRP-B are presented in 

Table 6. The results are from the constraint of 70% of budget.  

Table 6. Runtime results for NRP-A and NRP-B with 70%. 

Method NRP-A 70% NRP-B 70% 

Exact 

Technique 
520 1030 

Genetic 

Algorithm 
40.92±11.112 504.72±95.665 

Simulated 

Annealing 
23.01±7.476 292.62±55.548 

Human Experts 
1,731,428.57 

±2,587,005.57 

3,084,000.00 

±2,542,943.10 

Random 0.00±0.002 0.06±0.016 

 

The results indicate the exact optimization technique has 

runtime greater than the average of metaheuristics. In NRP-A, 

the runtime of exact technique was 12.70 times of the Genetic 

Algorithms, and 22.59 times than the execution runtime of 

Simulated Annealing. However, the time of exact technique was 

about half second, and then it is a valid execution time for the 

context. Other aspect regarding this issue is that the time from 

exact technique was lower that the time required for the human 

experts. The results for B show similar behavior: execution 

runtime of exact approach is 2.04 times than Genetic Algorithm 

and 3.51 than Simulated Annealing. 

Table 7 and Figure 7 show the results for execution runtime for 

NRP-C. 

Table 7. Execution results for NRP-C (30%, 50% and 70%). 

Method 
NRP-C 

30% 
NRP-C 50% NRP-C 70% 

Exact 

Technique 
5520 8410 1850 

Genetic 

Algorithm 

1718.56 

±259.97 

1735.41 

±182.42 

2162.30 

±287.98 

Simulated 

Annealing 

3264.88 

±668.00 

2150.93 

±345.49 

1384.98 

±186.31 

 

Fig 7: Runtime results in NRP-C. 
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Despite the greater execution time in most cases, the exact 

technique still has a reasonable time. For example, the greater 

value in NRP-C is 8,410 milliseconds, which is about 8.4 

seconds. This value, even greater than the ones required by the 

metaheuristics, is of valid use in the context.  

The results of execution runtime for NRP-D are shown in Table 

8 and Figure 8 below. 

Table 8. Execution results for NRP-D (30%, 50% and 70%). 

Method 
NRP-D 

30% 
NRP-D 50% NRP-D 70% 

Exact 

Technique 
8520 1441 5070 

Genetic 

Algorithm 

36649.20 

±10792.79 

42794.11 

±15531.51 

37698.60 

±3790.49 

Simulated 

Annealing 

80568.10 

±26046.21 

56605.51 

±21300.49 

31820.10 

±5967.78 

 

Fig 8: Runtime results in NRP-D. 

In this case, the time of exact technique was lower than the 

metaheuristics. That happens mainly because for a bigger 

instance, the metaheuristics are set to have more evaluations and 

operations. Nonetheless, a result that can be taken from the 

graphic is that the Genetic Algorithm had similar times, while 

Simulated Annealing has presented an increasing runtime by the 

increase in budget constraint. 

Finally, Table 9 and Figure 9 show the results for execution 

runtime for NRP-E. 

Table 9. Execution results for NRP-E (30%, 50% and 70%). 

Method 
NRP-E 

30% 
NRP-E 50% NRP-E 70% 

Exact 

Technique 
1850 1070 1380 

Genetic 

Algorithm 

6760.64 

±1653.32 

6130.74 

±1165.81 

6191.47 

±650.08 

Simulated 

Annealing 

7132.54 

±1898.25 

3446.03 

±670.57 

2841.17 

±283.82 

 

Fig 9: Runtime results in NRP-E. 

A result that can be taken from the Figure 9 is that Simulated 

Annealing strongly increase its time by the 30% budget 

constraint. 

7. CONCLUSION 
Given the importance of software systems in today's society, it is 

important that their development is done in the best possible 

way. During such a development, some complex problems can 

occur and to solve them by those software experts involved may 

be a highly difficult task. In the phase of requirements 

engineering, for instance, a complex problem occurs when 

dealing with the selection of which requirements should be 

implemented to the next release, based on values of importance 

and in budget constraints. 

In literature, this problem has been tackled by metaheuristics, 

and in this work we propose the resolution by exact techniques, 

which have the advantage of finding the best solutions to the 

problem. From tests carried out in several instances, we can 

indicate the validity of such an approach. Besides, as expected, 

the exact optimization results were better than the 

metaheuristics, the execution time has shown to be reasonable. 

In this case, it was observed that the solutions of the 

metaheuristic genetic algorithms, which performed better 

compared to Simulated Annealing, were up 31.56% worse 

compared to those found by the exact method. Moreover, it was 

noticed that for bigger problems, more complex, the overall 

performance of metaheuristics deteriorated. An additional fact 

taken from metaheuristics is that the average performance of 

these techniques gets worse with a more restricted limit of 

budget constraint of the problem. 

Regarding execution time, the approach based on exact 

techniques presented, indeed, in general, more time to resolve 

the instances of the problems. However, for example, the longer 

runtime stated in the mono-objective problem was 8.52 seconds, 

in the instance NRP-D, which shows that, despite being a higher 

value when compared to those of metaheuristics, it constitutes 

an acceptable execution time. 

This study also carried out comparisons with solutions from 

experts involved in the area. From the results, we verify the 

necessity of applying the automatic techniques and based on 

mathematical optimization in solving the problems, because in 
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general the results found by experts proved worse. In the case of 

the mono-objective selection requirements, we found that on 

average the solutions given by experts were 40% and 18.9% 

worse than the optimal solution in NRP-A and NRP-B, 

respectively. 

As future work, we indicate performing experiments in larger 

instances, as well as tests with different data in order to 

demonstrate the validity of the approach in different scenarios. 

Other research is to deal with testing the approach with real data 

from software projects. 
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