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1 Molecular Dynamics Simulations

Molecular Dynamics simulation is a technique to compute the equilibrium and
transport properties of a classical many-body system. In this context, the word
classical means that the nuclear motion of the constituent particles obeys the
laws of classical mechanics. This is an excellent approximation for a wide range
of materials. Only when we consider the translational or rotational motion of
light atoms or molecules (He, H2, D2) or vibrational motion with a frequency
ν such that hν > kBT , should we worry about quantum effects.

Of course, our discussion of this vast subject is necessarily incomplete.
Other aspects of the Molecular Dynamics techniques can be found in [1–4].

1.1 Molecular Dynamics: The Idea

Molecular Dynamics simulations are in many respects very similar to real ex-
periments. When we perform a real experiment, we proceed as follows. We
prepare a sample of the material that we wish to study. We connect this sam-
ple to a measuring instrument (e.g., a thermometer, manometer, or viscosime-
ter), and we measure the property of interest during a certain time interval. If
our measurements are subject to statistical noise (as most measurements are),
then the longer we average, the more accurate our measurement becomes. In
a Molecular Dynamics simulation, we follow exactly the same approach. First,
we prepare a sample: we select a model system consisting of N particles and
we solve Newton’s equations of motion for this system until the properties
of the system no longer change with time (we equilibrate the system). After
equilibration, we perform the actual measurement. In fact, some of the most
common mistakes that can be made when performing a computer experiment
are very similar to the mistakes that can be made in real experiments (e.g., the
sample is not prepared correctly, the measurement is too short, the system un-
dergoes an irreversible change during the experiment, or we do not measure
what we think).

To measure an observable quantity in a Molecular Dynamics simulation,
we must first of all be able to express this observable as a function of the po-
sitions and momenta of the particles in the system. For instance, a convenient
definition of the temperature in a (classical) many-body system makes use of

∗This text is largely, but not exclusively, based on the book Understanding Molecular Simulation
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the equipartition of energy over all degrees of freedom that enter quadratically
in the Hamiltonian of the system. In particular for the average kinetic energy
per degree of freedom, we have

〈
1

2
mv2

α

〉
=

1

2
kBT. (1.1)

In a simulation, we use this equation as an operational definition of the tem-
perature. In practice, we would measure the total kinetic energy of the system
and divide this by the number of degrees of freedom Nf(= 3N − 3 for a system
of N particles with fixed total momentum1). As the total kinetic energy of a
system fluctuates, so does the instantaneous temperature:

T(t) =

N∑

i=1

miv
2
i (t)

kBNf
. (1.2)

The relative fluctuations in the temperature will be of order 1/
√

Nf. As Nf is
typically of the order of 102–103, the statistical fluctuations in the temperature
are of the order of 5–10 %. To get an accurate estimate of the temperature, one
should average over many fluctuations.

1.2 Molecular Dynamics: A Program

The best introduction to Molecular Dynamics simulations is to consider a sim-
ple program. The program we consider is kept as simple as possible to illus-
trate a number of important features of Molecular Dynamics simulations.

The program is constructed as follows:

1. We read in the parameters that specify the conditions of the run (e.g.,
initial temperature, number of particles, density, time step).

2. We initialize the system (i.e., we select initial positions and velocities).

3. We compute the forces on all particles.

4. We integrate Newton’s equations of motion. This step and the previous
one make up the core of the simulation. They are repeated until we have
computed the time evolution of the system for the desired length of time.

5. After completion of the central loop, we compute and print the averages
of measured quantities, and stop.

Algorithm 1 is a short pseudo-algorithm that carries out a Molecular Dynamics
simulation for a simple atomic system. We discuss the different operations in
the program in more detail.

1.2.1 Initialization

To start the simulation, we should assign initial positions and velocities to all
particles in the system. The particle positions should be chosen compatible
with the structure that we are aiming to simulate. In any event, the particles
should not be positioned at positions that result in an appreciable overlap of

1Actually, if we define the temperature of a microcanonical ensemble through (kBT)−1 =
(∂ ln Ω/∂E), then we find that, for a d-dimensional system of N atoms with fixed total momentum,
kBT is equal to 2E/(d(N − 1) − 2).
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Algorithm 1 (A Simple Molecular Dynamics Program)

program md simple MD program

call init initialization
t=0
do while (t.lt.tmax) MD loop

call force(f,en) determine the forces
call integrate(f,en) integrate equations of motion
t=t+delt
call sample sample averages

enddo
stop
end

Comment to this algorithm:

1. Subroutines init, force, integrate, and sample will be described in
Algorithms 2, 3, and 4, respectively. Subroutine sample is used to calculate
averages like pressure or temperature.

the atomic or molecular cores. Often this is achieved by initially placing the
particles on a cubic lattice.

In the present case (Algorithm 2), we have chosen to start our run from
a simple cubic lattice. Assume that the values of the density and initial tem-
perature are chosen such that the simple cubic lattice is mechanically unstable
and melts rapidly. First, we put each particle on its lattice site and then we at-
tribute to each velocity component of every particle a value that is drawn from
a uniform distribution in the interval [−0.5, 0.5]. This initial velocity distribu-
tion is Maxwellian neither in shape nor even in width. Subsequently, we shift
all velocities, such that the total momentum is zero and we scale the resulting
velocities to adjust the mean kinetic energy to the desired value. We know that,
in thermal equilibrium, the following relation should hold:

〈
v2

α

〉
= kBT/m, (1.3)

where vα is the α component of the velocity of a given particle. We can use this
relation to define an instantaneous temperature at time t T(t):

kBT(t) ≡
N∑

i=1

mv2
α,i(t)

Nf
. (1.4)

Clearly, we can adjust the instantaneous temperature T(t) to match the desired
temperature T by scaling all velocities with a factor (T/T(t))1/2. This initial
setting of the temperature is not particularly critical, as the temperature will
change anyway during equilibration.

As will appear later, we do not really use the velocities themselves in our
algorithm to solve Newton’s equations of motion. Rather, we use the positions
of all particles at the present (x) and previous (xm) time steps, combined with
our knowledge of the force (f) acting on the particles, to predict the positions at
the next time step. When we start the simulation, we must bootstrap this pro-
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Algorithm 2 (Initialization of a Molecular Dynamics Program)

subroutine init initialization of MD program
sumv=0
sumv2=0
do i=1,npart

x(i)=lattice pos(i) place the particles on a lattice
v(i)=(ranf()-0.5) give random velocities
sumv=sumv+v(i) velocity center of mass
sumv2=sumv2+v(i)**2 kinetic energy

enddo
sumv=sumv/npart velocity center of mass
sumv2=sumv2/npart mean squared velocity
fs=sqrt(3*temp/sumv2) scale factor of the velocities
do i=1,npart set desired kinetic energy and set

v(i)=(v(i)-sumv)*fs velocity center of mass to zero
xm(i)=x(i)-v(i)*dt position previous time step

enddo
return
end

Comments to this algorithm:

1. Function lattice pos gives the coordinates of lattice position i and ranf()
gives a uniformly distributed random number. We do not use a Maxwell-
Boltzmann distribution for the velocities, on equilibration it will become a
Maxwell-Boltzmann distribution.

2. In computing the number of degrees of freedom, we assume a three-dimensional
system (in fact, we approximate Nf by 3N).

cedure by generating approximate previous positions. Without much consid-
eration for any law of mechanics but the conservation of linear momentum, we
approximate x for a particle in a direction by xm(i) = x(i) - v(i)*dt. Of
course, we could make a better estimate of the true previous position of each
particle. But as we are only bootstrapping the simulation, we do not worry
about such subtleties.

1.2.2 The Force Calculation

What comes next is the most time-consuming part of almost all Molecular Dy-
namics simulations: the calculation of the force acting on every particle. If we
consider a model system with pairwise additive interactions (as we do in the
present case), we have to consider the contribution to the force on particle i

due to all its neighbors. If we consider only the interaction between a particle
and the nearest image of another particle, this implies that, for a system of N

particles, we must evaluate N× (N − 1)/2 pair distances.
This implies that, if we use no tricks, the time needed for the evaluation

of the forces scales as N2. There exist efficient techniques to speed up the
evaluation of both short-range and long-range forces in such a way that the
computing time scales as N, rather than N2. In Appendix C of ref. [5], we
describe some of the more common techniques to speed up the simulations.
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Algorithm 3 (Calculation of the Forces)

subroutine force(f,en) determine the force
en=0 and energy
do i=1,npart

f(i)=0 set forces to zero
enddo
do i=1,npart-1
do j=i+1,npart loop over all pairs

xr=x(i)-x(j)
xr=xr-box*nint(xr/box) periodic boundary conditions
r2=xr**2
if (r2.lt.rc2) then test cut-off
r2i=1/r2
r6i=r2i**3
ff=48*r2i*r6i*(r6i-0.5) Lennard-Jones potential
f(i)=f(i)+ff*xr update force
f(j)=f(j)-ff*xr
en=en+4*r6i*(r6i-1)-ecut update energy

endif
enddo

enddo
return
end

Comments to this algorithm:

1. For efficiency reasons the factors 4 and 48 are usually taken out of the force loop
and taken into account at the end of the calculation for the energy.

2. The term ecut is the value of the potential at r = rc; for the Lennard-Jones
potential, we have

ecut = 4

(
1

r12
c

−
1

r6
c

)
.

Although the examples in this appendix apply to Monte Carlo simulations, the
same techniques can also be used in a Molecular Dynamics simulation. How-
ever, in the present, simple example (see Algorithm 3) we will not attempt to
make the program particularly efficient and we shall, in fact, consider all pos-
sible pairs of particles explicitly.

We first compute the current distance in the x, y, and z directions between
each pair of particles i and j. These distances are indicated by xr. As in the
Monte Carlo case, we use periodic boundary conditions. In the present exam-
ple, we use a cutoff at a distance rc in the explicit calculation of intermolecular
interactions, where rc is chosen to be less than half the diameter of the periodic
box. In that case we can always limit the evaluation of intermolecular inter-
actions between i and j to the interaction between i and the nearest periodic
image of j.

In the present case, the diameter of the periodic box is denoted by box. If
we use simple cubic periodic boundary conditions, the distance in any direc-
tion between i and the nearest image of j should always be less (in absolute
value) than box/2. A compact way to compute the distance between i and
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the nearest periodic image of j uses the nearest integer function (nint(x) in
FORTRAN). The nint function simply rounds a real number to the nearest in-
teger.2 Starting with the x-distance (say) between i and any periodic image
of j, xr, we compute the x-distance between i and the nearest image of j
as xr=xr-box*nint(xr/box). Having thus computed all Cartesian com-
ponents of rij, the vector distance between i and the nearest image of j, we
compute r2

ij (denoted by r2 in the program). Next we test if r2
ij is less than r2

c,
the square of the cutoff radius. If not, we immediately skip to the next value
of j. It perhaps is worth emphasizing that we do not compute |rij| itself, be-
cause this would be both unnecessary and expensive (as it would involve the
evaluation of a square root).

If a given pair of particles is close enough to interact, we must compute
the force between these particles, and the contribution to the potential energy.
Suppose that we wish to compute the x-component of the force

fx(r) = −
∂u(r)

∂x

= −
(x

r

) (
∂u(r)

∂r

)
.

For a Lennard-Jones system (in reduced units),

fx(r) =
48x

r2

(
1

r12
− 0.5

1

r6

)
.

1.2.3 Integrating the Equations of Motion

Now that we have computed all forces between the particles, we can integrate
Newton’s equations of motion. Algorithms have been designed to do this.
Some of these will be discussed in a bit more detail. In the program (Algo-
rithm 4), we have used the so-called Verlet algorithm. This algorithm is not
only one of the simplest, but also usually the best.

To derive it, we start with a Taylor expansion of the coordinate of a particle,
around time t,

r(t + ∆t) = r(t) + v(t)∆t +
f(t)

2m
∆t2 +

∆t3

3!

...
r +O(∆t4),

similarly,

r(t − ∆t) = r(t) − v(t)∆t +
f(t)

2m
∆t2 −

∆t3

3!

...
r +O(∆t4).

Summing these two equations, we obtain:

r(t + ∆t) + r(t − ∆t) = 2r(t) +
f(t)

m
∆t2 +O(∆t4)

or

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) +
f(t)

m
∆t2. (1.5)

The estimate of the new position contains an error that is of order ∆t4,
where ∆t is the time step in our Molecular Dynamics scheme. Note that the

2Unfortunately, many FORTRAN compilers yield very slow nint functions. It is often cheaper
to write your own code to replace the nint library routine.
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Algorithm 4 (Integrating the Equations of Motion)

subroutine integrate(f,en) integrate equations of motion
sumv=0
sumv2=0
do i=1,npart MD loop

xx=2*x(i)-xm(i)+delt**2*f(i) Verlet algorithm (1.5)
vi=(xx-xm(i))/(2*delt) velocity (1.6)
sumv=sumv+vi velocity center of mass
sumv2=sumv2+vi**2 total kinetic energy
xm(i)=x(i) update positions previous time
x(i)=xx update positions current time

enddo
temp=sumv2/(3*npart) instantaneous temperature
etot=(en+sumv2)/(2*npart) total energy per particle
return
end

Comments to this algorithm:

1. The total energy etot should remain approximately constant during the sim-
ulation. A drift of this quantity may signal programming errors. It therefore is
important to monitor this quantity. Similarly, the velocity of the center of mass
sumv should remain zero.

2. In this subroutine we use the Verlet algorithm (1.5) to integrate the equations of
motion. The velocities are calculated using equation (1.6).

Verlet algorithm does not use the velocity to compute the new position. One,
however, can derive the velocity from knowledge of the trajectory, using

r(t + ∆t) − r(t − ∆t) = 2v(t)∆t +O(∆t3)

or

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+O(∆t2). (1.6)

This expression for the velocity is only accurate to order ∆t2. However, it is
possible to obtain more accurate estimates of the velocity (and thereby of the
kinetic energy) using a Verlet-like algorithm (i.e., an algorithm that yields tra-
jectories identical to the one given by equation (1.5)). In our program, we use
the velocities only to compute the kinetic energy and, thereby the instanta-
neous temperature.

Now that we have computed the new positions, we may discard the posi-
tions at time t − ∆t. The current positions become the old positions and the
new positions become the current positions.

After each time step, we compute the current temperature (temp), the cur-
rent potential energy (en) calculated in the force loop, and the total energy
(etot). Note that the total energy should be conserved.

This completes the introduction to the Molecular Dynamics method. The
reader should now be able to write a basic Molecular Dynamics program for
liquids or solids consisting of spherical particles. In what follows, we shall do
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two things. First of all, we discuss, in a bit more detail, the methods avail-
able to integrate the equations of motion. Next, we discuss measurements in
Molecular Dynamics simulations.

1.3 Equations of Motion

It is obvious that a good Molecular Dynamics program requires a good algo-
rithm to integrate Newton’s equations of motion. In this sense, the choice of
algorithm is crucial. However, although it is easy to recognize a bad algorithm,
it is not immediately obvious what criteria a good algorithm should satisfy. Let
us look at the different points to consider.

Although, at first sight, speed seems important, it is usually not very rele-
vant because the fraction of time spent on integrating the equations of motion
(as opposed to computing the interactions) is small, at least for atomic and
simple molecular systems.

Accuracy for large time steps is more important, because the longer the
time step that we can use, the fewer evaluations of the forces are needed per
unit of simulation time. Hence, this would suggest that it is advantageous to
use a sophisticated algorithm that allows use of a long time step.

Algorithms that allow the use of a large time step, achieve this by storing in-
formation on increasingly higher-order derivatives of the particle coordinates.
As a consequence, they tend to require more memory storage. For a typical
simulation, this usually is not a serious drawback because, unless one consid-
ers very large systems, the amount of memory needed to store these derivatives
is small compared to the total amount available even on a normal workstation.

Energy conservation is an important criterion, but actually we should dis-
tinguish two kinds of energy conservation; namely, short time and long time.
The sophisticated higher-order algorithms tend to have very good energy con-
servation for short times (i.e., during a few time steps). However, they often
have the undesirable feature that the overall energy drifts for long times. In
contrast, Verlet-style algorithms tend to have only moderate short-term energy
conservation but little long-term drift.

It would seem to be most important to have an algorithm that accurately
predicts the trajectory of all particles for both short and long times. In fact,
no such algorithm exists. For essentially all systems that we study by MD
simulations, we are in the regime where the trajectory of the system through
phase space (i.e., the 6N-dimensional space spanned by all particle coordinates
and momenta) depends sensitively on the initial conditions. This means that
two trajectories that are initially very close will diverge exponentially as time
progresses. We can consider the integration error caused by the algorithm as
the source for the initial small difference between the “true” trajectory of the
system and the trajectory generated in our simulation. We should expect that
any integration error, no matter how small, will always cause our simulated
trajectory to diverge exponentially from the true trajectory compatible with the
same initial conditions. This so-called Lyapunov instability (see section 1.3.1)
would seem to be a devastating blow to the whole idea of Molecular Dynamics
simulations but we have good reasons to assume that even this problem need
not be serious.

Clearly, this statement requires some clarification. First of all, one should
realize that the aim of an MD simulation is not to predict precisely what will
happen to a system that has been prepared in a precisely known initial condi-
tion: we are always interested in statistical predictions. We wish to predict the
average behavior of a system that was prepared in an initial state about which
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we know something (e.g., the total energy) but by no means everything. In
this respect, MD simulations differ fundamentally from numerical schemes to
predict the trajectory of satellites through space: in the latter case, we really
wish to predict the true trajectory. We cannot afford to launch an ensemble of
satellites and make statistical predictions about their destination. However, in
MD simulations, statistical predictions are good enough. Still, this would not
justify the use of inaccurate trajectories unless the trajectories obtained numer-
ically, in some sense, are close to true trajectories.

This latter statement that is generally believed to be true although, to our
knowledge, it has not been proven for any class of systems that is of interest
for MD simulations. However, considerable numerical evidence (see, e.g., [6])
suggest that there exist so-called shadow orbits. A shadow orbit is a true tra-
jectory of a many-body system that closely follows the numerical trajectory for
a time that is long compared to the time it takes the Lyapunov instability to
develop. Hence, the results of our simulation are representative of a true tra-
jectory in phase space, even though we cannot tell a priori which. Surprisingly
(and fortunately), it appears that shadow orbits are better behaved (i.e., track
the numerical trajectories better) for systems in which small differences in the
initial conditions lead to an exponential divergence of trajectories than for the,
seemingly, simpler systems that show no such divergence [6]. In spite of this
reassuring evidence, it should be emphasized that it is just evidence and not
proof. Hence, our trust in Molecular Dynamics simulation as a tool to study the
time evolution of many-body systems is based largely on belief. To conclude
this discussion, let us say that there is clearly still a corpse in the cupboard. We
believe this corpse will not haunt us, and we quickly close the cupboard. For
more details, the reader is referred to [7, 8].

Newton’s equation of motion are time reversible, and so should be our algo-
rithms. In fact, many algorithms (for instance the predictor-corrector schemes,
see Appendix E of ref. [5], and many of the schemes used to deal with con-
straints) are not time reversible. That is, future and past phase space coordi-
nates do not play a symmetric role in such algorithms. As a consequence, if
one were to reverse the momenta of all particles at a given instant, the sys-
tem would not trace back its trajectory in phase space, even if the simulation
would be carried out with infinite numerical precision. Only in the limit of
an infinitely short time step will such algorithms become reversible. How-
ever, what is more important, many seemingly reasonable algorithms differ
in another crucial respect from Hamilton’s equation of motion: true Hamilto-
nian dynamics leaves the magnitude of any volume element in phase space
unchanged, but many numerical schemes, in particular those that are not time
reversible, do not reproduce this area-preserving property. This may sound
like a very esoteric objection to an algorithm, but it is not. Again, without at-
tempting to achieve a rigorous formulation of the problem, let us simply note
that all trajectories that correspond to a particular energy E are contained in a
(hyper) volume Ω in phase space. If we let Hamilton’s equation of motion act
on all points in this volume (i.e., we let the volume evolve in time), then we
end up with exactly the same volume. However, a non-area-preserving algo-
rithm will map the volume Ω on another (usually larger) volume Ω ′. After
sufficiently long times, we expect that the non-area-preserving algorithm will
have greatly expanded the volume of our system in phase space. This is not
compatible with energy conservation. Hence, it is plausible that nonreversible
algorithms will have serious long-term energy drift problems. Reversible, area-
preserving algorithms will not change the magnitude of the volume in phase
space. This property is not sufficient to guarantee the absence of long-term en-
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ergy drift, but it is at least compatible with it. It is possible to check whether
an algorithm is area preserving by computing the Jacobian associated with the
transformation of old to new phase space coordinates.

Finally, it should be noted that even when we integrate a time-reversible
algorithm, we shall find that the numerical implementation is hardly ever truly
time reversible. This is so, because we work on a computer with finite machine
precision using floating-point arithmetic that results in rounding errors (on the
order of the machine precision).

In the remainder of this section, we shall discuss some of these points in
more detail. Before we do so, let us first consider how the Verlet algorithm
scores on these points. First of all, the Verlet algorithm is fast. But we had
argued that this is relatively unimportant. Second, it is not particularly accu-
rate for long time steps. Hence, we should expect to compute the forces on all
particles rather frequently. Third, it requires about as little memory as is at all
possible. This is useful when we simulate very large systems, but in general it
is not a crucial advantage. Fourth, its short-term energy conservation is fair (in
particular in the versions that use a more accurate expression for the velocities)
but, more important, it exhibits little long-term energy drift. This is related to
the fact that the Verlet algorithm is time reversible and area preserving. In fact,
although the Verlet algorithm does not conserve the total energy of this system
exactly, strong evidence indicates that it does conserve a pseudo-Hamiltonian
approaching the true Hamiltonian in the limit of infinitely short time steps.
The accuracy of the trajectories generated with the Verlet algorithm is not im-
pressive. But then, it would hardly help to use a better algorithm. Such an
algorithm may postpone the unavoidable exponential growth of the error in
the trajectory by a few hundred time steps (see section 1.3.1), but no algorithm
is good enough that it will keep the trajectories close to the true trajectories for
a time comparable to the duration of a typical Molecular Dynamics run.3

1.3.1 Lyapunov Instability

To end this discussion of algorithms, we wish to illustrate the extreme sensitiv-
ity of the trajectories to small differences in initial conditions. Let us consider
the position (rN) of one of the N particles at time t. This position is a function
of the initial positions and momenta at t = 0:

r(t) = f
[
rN(0), pN(0); t

]
.

Let us now consider the position at time t that would result if we perturbed
the initial conditions (say, some of the momenta) by a small amount ε. In that
case, we would obtain a different value for r at time t:

r ′(t) = f
[
rN(0), pN(0) + ε; t

]
.

We denote the difference between r(t) and r ′(t) by ∆r(t). For sufficiently short
times, ∆r(t) is linear in ε. However, the coefficient of the linear dependence
diverges exponentially; that is

|∆r(t)| ∼ ε exp(λt). (1.7)

This so-called Lyapunov instability of the trajectories is responsible for our in-
ability to accurately predict a trajectory for all but the shortest simulations. The

3Error free integration of the equations of motion is possible for certain discrete models, such
as lattice-gas cellular automata. But these models do not follow Newton’s equation of motion.
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Figure 1: Illustration of the Lyapunov instability in a simulation of a Lennard-
Jones system. The figure shows the time dependence of the sum of squared
distances between two trajectories that were initially very close (see text). The
total length of the run in reduced units was 5, which corresponds to 1000 time
steps. Note that, within this relatively short time, the two trajectories become
essentially uncorrelated.

exponent λ is called the Lyapunov exponent (more precisely, the largest Lya-
punov exponent; there are more such exponents, 6N in fact, but the largest
dominates the long-time exponential divergence of initially close trajectories).
Suppose that we wish to maintain a certain bound ∆max on |∆r(t)|, in the in-
terval 0 < t < tmax. How large an initial error (ε) can we afford? From equa-
tion (1.7), we deduce

ε ∼ ∆max exp(−λtmax).

Hence, the acceptable error in our initial conditions decreases exponentially
with tmax, the length of the run. To illustrate that this effect is real, we show
the result of two almost identical simulations: the second differs from the first
in that the x components of the velocities of 2 particles (out of 1000) have been
changed by +10−10 and −10−10 (in reduced units). We monitor the sum of the
squares of the differences of the positions of all particles:

N∑

i=1

|ri(t) − r ′i(t)|
2
.

As can be seen in Figure 1, this measure of the distance does indeed grow
exponentially with time.

After 1000 time steps, the two systems that were initially very close have be-
come very nearly uncorrelated. It should be stressed this run was performed
using perfectly normal parameters (density, temperature, time step). The only
unrealistic thing about this simulation is that it is extremely short. Most Molec-
ular Dynamics simulations require many tens, if not hundreds, or thousands
of time steps.

1.4 Computer Experiments

Now that we have a working Molecular Dynamics program, we wish to use
it to “measure” interesting properties of many-body systems. What properties
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are interesting? First of all, of course, those quantities that can be compared
with real experiments. Simplest among these are the thermodynamic proper-
ties of the system under consideration, such as, the temperature T , the pressure
P, and the heat capacity CV . As mentioned earlier, the temperature is measured
by computing the average kinetic energy per degree of freedom. For a system
with f degrees of freedom, the temperature T is given by

T =
〈2K〉

f
. (1.8)

There are several different (but equivalent) ways to measure the pressure of a
classical N-body system. The most common among these is based on the virial
equation for the pressure. For pairwise additive interactions, we can write (see,
e.g., [9])

P = ρkBT +
1

dV

〈∑

i<j

f(rij) · rij

〉
, (1.9)

where d is the dimensionality of the system, and f(rij) is the force between
particles i and j at a distance rij. Note that this expression for the pressure has
been derived for a system at constant N, V , and T , whereas our simulations
are performed at constant N, V , and E. In fact, the expression for the pres-
sure in the microcanonical ensemble (constant N,V, E) is not identical to the
expression that applies to the canonical (constant N,V, T ) ensemble. Lebowitz
et al. [10] have derived a general procedure to convert averages from one en-
semble to another. A more recent (and more accessible) description of these
inter-ensemble transformations has been given by Allen in [4]. An example
of a relation derived by such a transformation is the expression for the heat
capacity at constant volume, as obtained from the fluctuations in the kinetic
energy in the microcanonical ensemble:

〈K2
〉

NVE
− 〈K〉2NVE =

3k2
BT2

2N

(
1 −

3kB

2CV

)
. (1.10)

However, one class of thermodynamic functions cannot be measured di-
rectly in a simulation, in the sense that these properties cannot be expressed
as a simple average of some function of the coordinates and momenta of all
the particles in the system. Examples of such properties are the entropy S, the
Helmholtz free energy F, and the Gibbs free energy G. Separate techniques are
required to evaluate such thermal quantities in a computer simulation.

A second class of observable properties are the functions that characterize
the local structure of a fluid. Most notable among these is the so-called radial
distribution function g(r). The radial distribution function is of interest for two
reasons: first of all, neutron and X-ray scattering experiments on simple fluids,
and light-scattering experiments on colloidal suspensions, yield information
about g(r). Second, g(r) plays a central role in theories of the liquid state. Nu-
merical results for g(r) can be compared with theoretical predictions and thus
serve as a criterion to test a particular theory. In a simulation, it is straight-
forward to measure g(r): it is simply the ratio between the average number
density ρ(r) at a distance r from any given atom (for simplicity we assume that
all atoms are identical) and the density at a distance r from an atom in an ideal
gas at the same overall density. By construction, g(r) = 1 in an ideal gas. Any
deviation of g(r) from unity reflects correlations between the particles due to
the intermolecular interactions.
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Both the thermodynamic properties and the structural properties mentioned
previously do not depend on the time evolution of the system: they are static
equilibrium averages. Such averages can be obtained by Molecular Dynamics
simulations or equally well by Monte Carlo simulations. However, in addi-
tion to the static equilibrium properties, we can also measure dynamic equi-
librium properties in a Molecular Dynamics simulation (but not with a Monte
Carlo simulation). At first sight, a dynamic equilibrium property appears to be
a contradiction: in equilibrium all properties are independent of time, hence
any time dependence in the macroscopic properties of a system seems to be
related to nonequilibrium behavior. This is true, but it turns out that the time-
dependent behavior of a system that is only weakly perturbed is completely
described by the dynamic equilibrium properties of the system. Later, we
shall provide a simple introduction to the quantities that play a central role
in the theory of time-dependent processes near equilibrium, in particular the
so-called time-correlation functions. However, we shall not start with a general
description of nonequilibrium processes. Rather we start with a discussion of
a simple specific example that allows us to introduce most of the necessary
concepts.

1.4.1 Diffusion

Diffusion is the process whereby an initially nonuniform concentration profile
(e.g., an ink drop in water) is smoothed in the absence of flow (no stirring).
Diffusion is caused by the molecular motion of the particles in the fluid. The
macroscopic law that describes diffusion is known as Fick’s law, which states
that the flux j of the diffusing species is proportional to the negative gradient
in the concentration of that species:

j = −D∇c, (1.11)

where D, the constant of proportionality, is referred to as the diffusion coefficient.
In what follows, we shall be discussing a particularly simple form of diffusion,
namely, the case that the molecules of the diffusing species are identical to
the other molecules but for a label that does not affect the interaction of the
labeled molecules with the others. For instance, this label could be a particular
polarization of the nuclear spin of the diffusing species or a modified isotopic
composition. Diffusion of a labeled species among otherwise identical solvent
molecules is called self-diffusion.

Let us now compute the concentration profile of the tagged species, under
the assumption that, at time t = 0, the tagged species was concentrated at the
origin of our coordinate frame. To compute the time evolution of the concen-
tration profile, we must combine Fick’s law with an equation that expresses
conservation of the total amount of labeled material:

∂c(r, t)

∂t
+ ∇ · j(r, t) = 0. (1.12)

Combining equation (1.12) with equation (1.11), we obtain

∂2c(r, t)

∂t2
− D∇2c(r, t) = 0. (1.13)

We can solve equation (1.13) with the boundary condition

c(r, 0) = δ(r)
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(δ(r) is the Dirac delta function) to yield

c(r, t) =
1

(4πDt)d/2
exp

(
−

r2

4Dt

)
.

As before, d denotes the dimensionality of the system. In fact, for what follows
we do not need c(r, t) itself, but just the time dependence of its second moment:

〈
r2(t)

〉 ≡
∫

dr c(r, t)r2,

where we have used the fact that we have imposed
∫

dr c(r, t) = 1.

We can directly obtain an equation for the time evolution of 〈r2(t)〉 by multi-
plying equation (1.13) by r2 and integrating over all space. This yields

∂

∂t

∫
dr r2c(r, t) = D

∫
dr r2∇2c(r, t). (1.14)

The left-hand side of this equation is simply equal to

∂
〈
r2(t)

〉

∂t
.

Applying partial integration to the right-hand side, we obtain

∂
〈
r2(t)

〉

∂t
= D

∫
dr r2∇2c(r, t)

= D

∫
dr ∇(r2∇c(r, t)) − D

∫
dr ∇r2 ·∇c(r, t)

= D

∫
dS (r2∇c(r, t)) − 2D

∫
dr r ·∇c(r, t)

= 0 − 2D

∫
dr (∇ · rc(r, t)) + 2D

∫
dr (∇ · r)c(r, t)

= 0 + 2dD

∫
dr c(r, t)

= 2dD. (1.15)

Equation (1.15) relates the diffusion coefficient D to the width of the concen-
tration profile. This relation was first derived by Einstein. It should be realized
that, whereas D is a macroscopic transport coefficient, 〈r2(t)〉 has a microscopic
interpretation: it is the mean-square distance over which the labeled molecules
have moved in a time interval t. This immediately suggests how to measure
D in a computer simulation. For every particle i, we measure the distance
traveled in time t, ∆ri(t) and we plot the mean square of these distances as a
function of the time t:

〈
∆r(t)2

〉
=

1

N

N∑

i=1

∆ri(t)
2.

This plot would look like the one that will be shown later in Figure 5. We
should be more specific about what we mean by the displacement of a particle
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in a system with periodic boundary conditions. The displacement that we are
interested in is simply the time integral of the velocity of the tagged particle:

∆r(t) =

∫ t

0

dt ′ v(t ′).

In fact, there is a relation that expresses the diffusion coefficient directly in
terms of the particle velocities. We start with the relation

2D = lim
t→∞

∂
〈
x2(t)

〉

∂t
(1.16)

where, for convenience, we consider only one Cartesian component of the
mean-square displacement. If we write x(t) as the time integral of the x com-
ponent of the tagged-particle velocity, we get

〈
x2(t)

〉
=

〈(∫t

0

dt ′ vx(t ′)
)2

〉

=

∫t

0

∫t

0

dt ′dt ′′ 〈vx(t ′)vx(t ′′)〉

= 2

∫t

0

∫t ′

0

dt ′dt ′′ 〈vx(t ′)vx(t ′′)〉 . (1.17)

The quantity 〈vx(t ′)vx(t ′′)〉 is called the velocity autocorrelation function. It
measures the correlation between the velocity of a particle at times t ′ and t ′′.
The velocity autocorrelation function (VACF) is an equilibrium property of the
system, because it describes correlations between velocities at different times
along an equilibrium trajectory. As equilibrium properties are invariant under
a change of the time origin, the VACF depends only on the difference of t ′ and
t ′′. Hence,

〈vx(t ′)vx(t ′′)〉 = 〈vx(t ′ − t ′′)vx(0)〉 .
Inserting equation (1.17) in equation (1.16), we obtain

2D = lim
t→∞

2

∫ t

0

dt ′′ 〈vx(t − t ′′)vx(0)〉

D =

∫∞

0

dτ 〈vx(τ)vx(0)〉 . (1.18)

In the last line of equation (1.18) we introduced the coordinate τ ≡ t − t ′′.
Hence, we see that we can relate the diffusion coefficient D to the integral of
the velocity autocorrelation function. Such a relation between a transport co-
efficient and an integral over a time-correlation function is called a Green-Kubo
relation. Green-Kubo relations have been derived for many other transport co-
efficients, such as the shear viscosity η,

η =
1

VkBT

∫∞

0

dt 〈σxy(0)σxy(t)〉 (1.19)

with

σxy =

N∑

i=1


miv

x
i v

y
i +

1

2

∑

j 6=i

xijfy(rij)


 ; (1.20)
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the thermal conductivity λT ,

λT =
1

VkBT2

∫∞

0

dt 〈jez(0)jez(t)〉 (1.21)

with

jez =
d
dt

N∑

i=1

zi
1

2


miv

2
i +

∑

j 6=i

v(rij)


 ; (1.22)

and electrical conductivity σe

σe =
1

VkBT

∫∞

0

dt
〈
jel
x (0)jel

x (t)
〉

(1.23)

with

jel
x =

N∑

i=1

qiv
x
i . (1.24)

For details, see, for example, [9]. Time correlation functions can easily be mea-
sured in a Molecular Dynamics simulation. It should be emphasized that for
classical systems, the Green-Kubo relation for D and the Einstein relation are
strictly equivalent. There may be practical reasons to prefer one approach over
the other, but the distinction is never fundamental.

1.5 Some Applications

Let us illustrate the results of the previous sections with an example. Like in
the section on Monte Carlo simulations we choose the Lennard-Jones fluid as
our model system. We use a truncated and shifted potential

utr−sh(r) =

{
ulj(r) − ulj(rc) r ≤ rc

0 r > rc
,

where ulj(r) is the Lennard-Jones potential and for these simulations rc = 2.5σ

is used.

Case Study 1 (Static Properties of the Lennard-Jones Fluid)
Let us start a simulation with 108 particles on a simple cubic lattice. We give
the system an initial temperature T = 0.728 and density ρ = 0.8442, which is
close to the triple (gas-liquid-solid) point of the Lennard-Jones fluid [11–13].

In Figure 2 the evolution of the total energy, kinetic energy, and potential
energy is shown. It is important to note that the total energy remains constant
and does not show a (slow) drift during the entire simulation. The kinetic and
potential energy do change initially (the equilibration period) but during the end
of the simulation they oscillate around their equilibrium value. This figure shows
that, for the calculation of the average potential energy or kinetic energy, we
need ca. 1000 time steps to equilibrate the simulation. The figure also shows
significant fluctuations in the potential energy, some of which may take several
(100) time steps before they disappear.

Appendix D of ref. [5] shows in detail how to calculate statistical error in
the data of a simulation. In this example, we use the method of Flyvbjerg and
Petersen [14]. The following operations on the set of data points are performed:
we start by calculating of the standard deviation of all the data points, then we
group two consecutive data points and determine again the standard deviation
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Figure 2: Total, potential, and kinetic energy per particle U/N as a function of
the number of time steps Ntime

of the new, blocked, data set This new data set contains half the number of
data points of the original set. The procedure is repeated until there are not
enough data points to compute a standard deviation, the number of times we
perform this operation is called M. What do we learn from this?

First of all, let us assume that the time between two samples is so large
that the data points are uncorrelated. If the data are uncorrelated the standard
deviation (as calculated according to the formula in Appendix D of ref. [5], i.e.,
correcting for the fact we have fewer data points) should be invariant to this
blocking operation and we should get a standard deviation that is independent
of M. In a simulation, however, the time between two data points is usually too
short to obtain a statistically independent sample, as a consequence consecu-
tive data points would be (highly) correlated. If we would calculate a standard
deviation using these data, this standard deviation will be too optimistic. The
effect of the block operation will be that after grouping two consecutive data
points, the correlation between the two new data points will be less. This,
however, will increase the standard deviation; the data will have more noise
since consecutive data points no longer resemble each other that closely. This
decrease of accuracy as a function of the number of blocking operations will
continue until we have grouped so many data points that two consecutive point
are really uncorrelated. This is exactly the standard deviation we want to deter-
mine. It is important to note that we have to ensure that the standard deviations
we are looking at are significant; therefore, we have to determine the standard
deviation of the error at the same time.

The results of this error calculation for the potential energy is shown in Fig-
ure 3, as expected, for a low value of M, the error increases until a plateau is
reached. For high values of M, we have only a few data points, which results
in a large standard deviation in the error. The advantage of this method is that
we have a means of finding out whether or not we have simulated enough; if
we do not find such a plateau, the simulation must have been too short. In
addition we find a reliable estimate of the standard deviation. The figure also
shows the effect of increasing the total length of the simulation by a factor of 4;
the statistical error in the potential energy has indeed decreased by a factor of
2.

In this way we obtained the following results. For the potential energy
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Figure 3: The standard deviation σ in the potential energy as a function of
the number of block operations M for a simulation of 150,000 and 600,000 time
steps.

U = −4.4190 ± 0.0012 and for the kinetic energy K = 2.2564 ± 0.0012, the
latter corresponds to an average temperature of T = 1.5043 ± 0.0008. For the
pressure, we have obtained: 5.16± 0.02.

In Figure 4, the radial distribution function is shown. This distribution func-
tion shows the characteristics of a dense liquid. We can use the radial distri-
bution function to calculate the energy and pressure. The potential energy per
particle can be calculated from

U/N =
1

2
ρ

∫∞

0

dr u(r)g(r)

= 2πρ

∫∞

0

dr r2u(r)g(r) (1.25)

and for the pressure from

P = ρT −
1

3

1

2
ρ2

∫∞

0

dr
du(r)

dr
rg(r)

= ρT −
2

3
πρ2

∫∞

0

dr
du(r)

dr
r3g(r), (1.26)

where u(r) is the pair potential.
Equations (1.25) and (1.26) can be used to check the consistency of the

energy and pressure calculations and the determination of the radial distribu-
tion function. In our example, we obtained from the radial distribution function
for the potential energy U/N = −4.419 and for the pressure P = 5.181, which is
in good agreement with the direct calculation.

Case Study 2 (Dynamic Properties of the Lennard-Jones Fluid)
As an example of a dynamic property we have determined the diffusion coeffi-
cient. As shown in the previous section, the diffusion coefficient can be deter-
mined from the mean square displacement or from the velocity autocorrelation
function.

In Figure 5 the mean-square displacement is shown as a function of the
simulation time. From the mean-square displacement we can determine the
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Figure 4: Radial distribution function of a Lennard-Jones fluid close to the
triple point: T = 1.5043± 0.0008 and ρ = 0.8442
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Figure 5: (left) Mean square displacement ∆r(t)2 as a function of the simula-
tion time t. Note that for long times, ∆r(t)2 varies linearly with t. The slope
is then given by 2dD, where d is the dimensionality of the system and D the
self-diffusion coefficient. (right) Velocity autocorrelation function 〈v(0) · v(t)〉
as a function of the simulation time t.

diffusion using equation (1.16). This equation, however, is valid only in the
limit t → ∞. In practice this means that have to verify that we have simulated
enough that the mean square displacement is really proportional to t and not
another power of t.

The velocity autocorrelation function can be used as an independent route
to test the calculation of the diffusion coefficient. The diffusion coefficient fol-
lows from equation (1.18). In this equation we have to integrate to t → ∞.
Knowing whether or not we have simulated sufficiently to perform this integra-
tion reliably is equivalent to the determination of the slope in the mean square
displacement. A simple trick is to determine the diffusion coefficient as a func-
tion of the truncation of the integration; if a plateau has been reached over a
sufficient number of integration limits, the calculation is probably reliable.
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2 Monte Carlo simulations

Conceptually, the Molecular Dynamics method is straightforward: we sim-
ply compute the time-averaged properties of a many-body system by solving
Newton’s equation of motion. To understand the Monte Carlo method, we
need to discuss some statistical mechanics. I try to limit this discussion to its
bare essentials.

2.1 Statistical-mechanical background

We start from the classical expression for the partition function Q:

Q = c

∫
dpNdrN exp[−H(rN pN)/kBT ], (2.1)

where rN stands for the coordinates of all N particles, and pN for the corre-
sponding momenta. The functionH(qN, pN) is the Hamiltonian of the system.
It expresses the total energy of an isolated system as a function of the coordi-
nates and momenta of the constituent particles: H = K + U , where K is the ki-
netic energy of the system and U is the potential energy. Finally, c is a constant
of proportionality, chosen such that the sum over quantum states approaches
the classical partition function in the limit h̄ → 0. For instance, for a system of
N identical atoms, c = 1/(h3NN!). The classical equation is

〈A〉 =

∫
dpNdrN A(pN, rN) exp[−βH(pN, rN)]∫

dpNdrN exp[−βH(pN, rN)]
, (2.2)

where β = 1/kBT . In this equation, the observable A has been expressed as
a function of coordinates and momenta. As K is a quadratic function of the
momenta the integration over momenta can be carried out analytically. Hence,
averages of functions that depend on momenta only are usually easy to eval-
uate. The difficult problem is the computation of averages of functions A(rN).
Only in a few exceptional cases can the multidimensional integral over particle
coordinates be computed analytically, in all other cases numerical techniques
must be used.

Having thus defined the nature of the numerical problem that we must
solve, let us next look at possible solutions. It might appear that the most
straightforward approach would be to evaluate 〈A〉 in equation (2.2) by nu-
merical quadrature, for instance using Simpson’s rule. It is easy to see, how-
ever, that such a method is completely useless even if the number of indepen-
dent coordinates DN (D is the dimensionality of the system) is still very small
O(100). Suppose that we plan to carry out the quadrature by evaluating the
integrand on a mesh of points in the DN-dimensional configuration space. Let
us assume that we take m equidistant points along each coordinate axis. The
total number of points at which the integrand must be evaluated is then equal
to mDN. For all but the smallest systems this number becomes astronomically
large, even for small values of m. For instance, if we take 100 particles in three
dimensions, and m = 5, then we would have to evaluate the integrand at 10210

points! Computations of such magnitude cannot be performed in the known
universe. And this is fortunate, because the answer that would be obtained
would have been subject to a large statistical error. After all, numerical quadra-
tures work best on functions that are smooth over distances corresponding to
the mesh size. But for most intermolecular potentials, the Boltzmann factor in
equation (2.2) is a rapidly varying function of the particle coordinates. Hence
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an accurate quadrature requires a small mesh spacing (i.e., a large value of m).
Moreover, when evaluating the integrand for a dense liquid (say), we would
find that for the overwhelming majority of points this Boltzmann factor is van-
ishingly small. For instance, for a fluid of 100 hard spheres at the freezing point,
the Boltzmann factor would be nonzero for 1 out of every 10260 configurations!

The closing lines of the previous section suggest that it is in general not
possible to evaluate an integral, such as

∫
drN exp[−βU(rN)], by direct Monte

Carlo sampling. However, in many cases, we are not interested in the configu-
rational part of the partition function itself but in averages of the type

〈A〉 =

∫
drN exp[−βU(rN)]A(rN)∫

drN exp[−βU(rN)]
. (2.3)

Hence, we wish to know the ratio of two integrals. What Metropolis et al. [15]
showed is that it is possible to devise an efficient Monte Carlo scheme to sam-
ple such a ratio.4 To understand the Metropolis method, let us first look more
closely at the structure of equation (2.3). In what follows we denote the config-
urational part of the partition function by Z:

Z ≡
∫

drN exp[−βU(rN)]. (2.4)

Note that the ratio exp(−βU)/Z in equation (2.3) is the probability density to
find the system in a configuration around rN. Let us denote this probability
density by

N (rN) ≡ exp[−βU(rN)]

Z
.

Clearly, N (rN) is nonnegative.
Suppose now that we are somehow able to randomly generate points in

configuration space according to this probability distributionN (rN). This means
that, on average, the number of points ni generated per unit volume around
a point rN is equal to LN (rN), where L is the total number of points that we
have generated. In other words;

〈A〉 ≈ 1

L

L∑

i=1

ni A(rN
i ). (2.5)

By now the reader is almost certainly confused, let us therefore try to clar-
ify this method with the help of a simple example (see Figure 6). In this fig-
ure, we compare two ways to measure the depth of the river Nile, by conven-
tional quadrature (left) and by Metropolis sampling; that is, the construction
of an importance-weighted random walk (right). In the conventional quadra-
ture scheme, the value of the integrand is measured at a predetermined set of
points. As the choice of these points does not depend on the value of the inte-
grand, many points may be located in regions where the integrand vanishes.
In contrast, in the Metropolis scheme, a random walk is constructed through
that region of space where the integrand is nonnegligible (i.e., through the Nile
itself). In this random walk, a trial move is rejected if it takes you out of the
water and is accepted otherwise. After every trial move (accepted or not), the
depth of the water is measured. The (unweighted) average of all these mea-
surements yields an estimate of the average depth of the Nile. This, then, is the

4An interesting account of the early history of the Metropolis method may be found in H.L. An-
derson, J. Stat. Phys. 43:731, 1986; and Wood [16] p. 3.
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Figure 6: Measuring the depth of the Nile: a comparison of conventional
quadrature (left), with the Metropolis scheme (right).

essence of the Metropolis method. In principle, the conventional quadrature
scheme would also give results for the total area of the Nile. In the importance
sampling scheme, however, information on the total area cannot be obtained
directly, since this quantity is similar to Z.

Let us next consider how to generate points in configuration space with
a relative probability proportional to the Boltzmann factor. The general ap-
proach is first to prepare the system in a configuration rN, which we denote
by o (old), that has a nonvanishing Boltzmann factor exp[−βU(o)]. This con-
figuration, for example, may correspond to a regular crystalline lattice with no
hard-core overlaps. Next, we generate a new trial configuration r ′N, which we
denote by n (new), by adding a small random displacement ∆ to o. The Boltz-
mann factor of this trial configuration is exp[−βU(n)]. We must now decide
whether we will accept or reject the trial configuration. Many rules for making
this decision satisfy the constraint that on average the probability of finding
the system in a configuration n is proportional to N (n). Here we discuss only
the Metropolis scheme, because it is simple and generally applicable.

Let us now “derive” the Metropolis scheme to determine the transition
probability π(o → n) to go from configuration o to n. It is convenient to start
with a thought experiment (actually a thought simulation). We carry out a very
large number (say M) Monte Carlo simulations in parallel, where M is much
larger than the total number of accessible configurations. We denote the num-
ber of points in any configuration o by m(o). We wish that, on average, m(o)
is proportional to N (o). The matrix elements π(o → n) must satisfy one ob-
vious condition: they do not destroy such an equilibrium distribution once it
is reached. This means that, in equilibrium, the average number of accepted
trial moves that result in the system leaving state o must be exactly equal to
the number of accepted trial moves from all other states n to state o. It is con-
venient to impose a much stronger condition; namely, that in equilibrium the
average number of accepted moves from o to any other state n is exactly can-
celed by the number of reverse moves. This detailed balance condition implies
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the following:
N (o)π(o → n) = N (n)π(n → o). (2.6)

Many possible forms of the transition matrix π(o → n) satisfy equation (2.6).
Let us look how π(o → n) is constructed in practice. We recall that a Monte
Carlo move consists of two stages. First, we perform a trial move from state o

to state n. We denote the transition matrix that determines the probability to
perform a trial move from o to n by α(o → n); where α is usually referred to as
the underlying matrix of Markov chain [17]. The next stage is the decision to
either accept or reject this trial move. Let us denote the probability of accepting
a trial move from o to n by acc(o → n). Clearly,

π(o → n) = α(o → n)× acc(o → n). (2.7)

In the original Metropolis scheme, α is chosen to be a symmetric matrix (acc(o →
n) = acc(n → o)). However, in later sections we shall see several examples
where α is not symmetric. If α is symmetric, we can rewrite equation (2.6) in
terms of the acc(o → n):

N (o)× acc(o → n) = N (n)× acc(n → o). (2.8)

From equation (2.8) follows

acc(o → n)

acc(n → o)
=
N (n)

N (o)
= exp{−β[U(n) − U(o)]}. (2.9)

Again, many choices for acc(o → n) satisfy this condition (and the obvious
condition that the probability acc(o → n) cannot exceed 1). The choice of
Metropolis et al. is

acc(o → n) = N (n)/N (o) if N (n) < N (o)
= 1 if N (n) ≥ N (o).

(2.10)

Other choices for acc(o → n) are possible (for a discussion, see for instance
[1]), but the original choice of Metropolis et al. appears to result in a more
efficient sampling of configuration space than most other strategies that have
been proposed.

2.2 A Basic Monte Carlo Algorithm

It is difficult to talk about Monte Carlo or Molecular Dynamics programs in
abstract terms. The best way to explain how such programs work is to write
them down. This will be done in the present section.

Most Monte Carlo or Molecular Dynamics programs are only a few hun-
dred to several thousand lines long. This is very short compared to, for in-
stance, a typical quantum-chemistry code. For this reason, it is not uncommon
that a simulator will write many different programs that are tailor-made for
specific applications. The result is that there is no such thing as a standard
Monte Carlo or Molecular Dynamics program. However, the cores of most
MD/MC programs are, if not identical, at least very similar. Next, we shall
construct such a core. It will be very rudimentary, and efficiency has been
traded for clarity. But it should demonstrate how the Monte Carlo method
work.
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2.3 The Algorithm

The prime purpose of the kind of Monte Carlo or Molecular Dynamics pro-
gram that we shall be discussing is to compute equilibrium properties of clas-
sical many-body systems. From now on, we shall refer to such programs sim-
ply as MC or MD programs, although it should be remembered that there exist
many other applications of the Monte Carlo method (and, to a lesser extent, of
the Molecular Dynamics method). Let us now look at a simple Monte Carlo
program.

In the previous section, the Metropolis method was introduced as a Mar-
kov process in which a random walk is constructed in such a way that the
probability of visiting a particular point rN is proportional to the Boltzmann
factor exp[−βU(rN)]. There are many ways to construct such a random walk.
In the approach introduced by Metropolis et al. [15], the following scheme is
proposed:

1. Select a particle at random, and calculate its energy U(rN).

2. Give the particle a random displacement; r ′ = r + ∆, and calculate its
new energy U(r ′N).

3. Accept the move from rN to r ′N with probability

acc(o → n) = min
(
1, exp{−β[U(r ′N) − U(rN)]}

)
. (2.11)

An implementation of this basic Metropolis scheme is shown in Algorithms 5
and 6.

2.4 Trial Moves

Now that we have specified the general structure of the Metropolis algorithm,
we should consider its implementation. We shall not go into the problem of
selecting intermolecular potentials for the model system under study. Rather,
we shall simply assume that we have an atomic or molecular model system in
a suitable starting configuration and that we have specified all intermolecular
interactions. We must now set up the underlying Markov chain; that is, the
matrix α. In more down to earth terms: we must decide how we are going to
generate trial moves. We should distinguish between trial moves that involve
only the molecular centers of mass and those that change the orientation or
possibly even the conformation of a molecule.

We start our discussion with trial moves of the molecular centers of mass.
A perfectly acceptable method to create a trial displacement is to add random
numbers between −∆/2 and +∆/2 to the x, y, and z coordinates of the molec-
ular center of mass:

x ′i → xi + ∆ (Ranf − 0.5)

y ′i → yi + ∆ (Ranf − 0.5)

z ′i → zi + ∆ (Ranf − 0.5), (2.12)

where Ranf are random numbers uniformly distributed between 0 and 1. Clearly,
the reverse trial move is equally probable (hence, α is symmetric).

We are now faced with two questions: how large should we choose ∆? and
should we attempt to move all particles simultaneously or one at a time? In
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Algorithm 5 (Basic Metropolis Algorithm)

PROGRAM mc basic Metropolis algorithm

do icycl=1,ncycl perform ncycl MC cycles
call mcmove displace a particle
if (mod(icycl,nsamp).eq.0)

+ call sample sample averages
enddo
end

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle
(see Algorithm 6).

2. Subroutine sample samples quantities every nsampth cycle.

Algorithm 6 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle

o=int(ranf()*npart)+1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x(o)+(ranf()-0.5)*delx give particle random displacement
call ener(xn,enn) energy new configuration
if (ranf().lt.exp(-beta acceptance rule (2.11)

+ *(enn-eno)) x(o)=xn accepted: replace x(o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.

2. Note that, if a configuration is rejected, the old configuration is retained.

3. The ranf() is a random number uniform in [0, 1].
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the latter case we should pick the molecule that is to be moved at random to
ensure that the underlying Markov chain remains symmetric. All other things
being equal, we should choose the most efficient sampling procedure. But, to
this end, we must first define what we mean by efficient sampling. In very vague
terms, sampling is efficient if it gives you good value for money. Good value
in a simulation corresponds to high statistical accuracy, and “money” is sim-
ply money: the money that buys your computer time and even your own time.
For the sake of the argument, we assume the average scientific programmer is
poorly paid. In that case we have to worry only about your computer budget.5

Then we could use the following definition of an optimal sampling scheme: a
Monte Carlo sampling scheme can be considered optimal if it yields the low-
est statistical error in the quantity to be computed for a given expenditure of
computing budget. Usually, computing budget is equivalent to CPU time.

From this definition it is clear that, in principle, a sampling scheme may
be optimal for one quantity but not for another. Actually, the preceding def-
inition is all but useless in practice (as are most definitions). For instance, it
is just not worth the effort to measure the error estimate in the pressure for a
number of different Monte Carlo sampling schemes in a series of runs of fixed
length. However, it is reasonable to assume that the mean-square error in the
observables is inversely proportional to the number of uncorrelated configura-
tions visited in a given amount of CPU time. And the number of independent
configurations visited is a measure for the distance covered in configuration
space. This suggests a more manageable, albeit rather ad hoc, criterion to esti-
mate the efficiency of a Monte Carlo sampling scheme: the sum of the squares
of all accepted trial displacements divided by computing time. This quantity
should be distinguished from the mean-square displacement per unit of com-
puting time, because the latter quantity goes to zero in the absence of diffusion
(e.g., in a solid or a glass), whereas the former does not.

Next, consider the choice of the parameter ∆ which determines the size of
the trial move. How large should ∆ be? If it is very large, it is likely that the
resulting configuration will have a high energy and the trial move will prob-
ably be rejected. If it is very small, the change in potential energy is probably
small and most moves will be accepted. In the literature, one often finds the
mysterious statement that an acceptance of approximately 50% should be op-
timal. This statement is not necessarily true. The optimum acceptance ratio is
the one that leads to the most efficient sampling of configuration space. If we
express efficiency as mean-square displacement per CPU time, it is easy to see
that different Monte Carlo codes will have different optimal acceptance ratios.
The reason is that it makes a crucial difference if the amount of computing re-
quired to test whether a trial move is accepted depends on the magnitude of
the move (see Figure 7). In the conventional Metropolis scheme, all continuous
interactions have to be computed before a move can be accepted or rejected.
Hence, for continuous potentials, the amount of computation does not depend
on the size of a trial move. In contrast, for simulations of molecules with hard
repulsive cores, a move can be rejected as soon as overlap with any neighbor
is detected. In that case, a rejected move is cheaper than an accepted one, and
hence the average computing time per trial move goes down as the step size
is increased. As a result, the optimal acceptance ratio for hard-core systems is
appreciably lower than for systems with continuous interactions. Exactly how
much depends on the nature of the program, in particular on whether it is a

5Still, we should stress that it is not worthwhile to spend a lot of time developing a fancy
computational scheme that will be only marginally better than existing, simpler schemes, unless
your program will run very often and speed is crucial.
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Figure 7: (left) Typical dependence of the mean-square displacement of a par-
ticle on the average size ∆ of the trial move. (right) Typical dependence of the
computational cost of a trial move on the step-size ∆. For continuous poten-
tials, the cost is constant, while for hard-core potentials it decreases rapidly
with the size of the trial move.

scalar or a vector code (in the latter case, hard-core systems are treated much
like continuous systems), how the information about neighbor lists is stored,
and even on the computational “cost” of random numbers and exponentiation.
The consensus seems to be that for hard-core systems the optimum acceptance
ratio is closer to 20 than to 50%, but this is just another rule of thumb that
should be checked.

2.5 Canonical Ensemble

In a conventional Molecular Dynamics simulation, the total energy E and the
total linear momentum P are constants of motion. Hence, Molecular Dynamics
simulations measure (time) averages in an ensemble that is very similar to the
microcanonical (see [18]); namely, the constant-NVE-P ensemble. In contrast, a
conventional Monte Carlo simulation probes the canonical (i.e., constant-NVT )
ensemble. The fact that these ensembles are different leads to observable differ-
ences in the statistical averages computed in Molecular Dynamics and Monte
Carlo simulations. Most of these differences disappear in the thermodynamic
limit and are already relatively small for systems of a few hundred particles.
However, the choice of ensemble does make a difference when computing the
mean-square value of fluctuations in thermodynamic quantities. Fortunately,
techniques exist to relate fluctuations in different ensembles [10]. Moreover,
nowadays it is common practice to carry out Molecular Dynamics simulations
in ensembles other than the microcanonical. In particular, it is possible to
do Molecular Dynamics at constant pressure, at constant stress, and at con-
stant temperature. The choice of ensembles for Monte Carlo simulations is
even wider: isobaric-isothermal, constant-stress-isothermal, grand-canonical
(i.e., constant-µVT ), and even microcanonical [19–24]. A more recent addition
to this list is a Monte Carlo method that employs the Gibbs-ensemble tech-
nique [25], which was developed to study phase coexistence in moderately
dense (multi component) fluids.
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N, V, T

Figure 8: Canonical ensemble. The number of particles, volume, and tem-
perature are constant. Shown is a Monte Carlo move in which a particle is
displaced.

2.6 General Approach

In the following sections, we will use the following procedure to demonstrate
the validity of our Monte Carlo algorithms:

1. Decide which distribution we want to sample. This distribution, denoted
N , will depend on the details of the ensemble.

2. Impose the condition of detailed balance,

K(o → n) = K(n → o), (2.13)

where K(o → n) is the flow of configuration o to n. This flow is given by
the product of the probability of being in configuration o, the probability
of generating configuration n, and the probability of accepting this move,

K(o → n) = N (o)× α(o → n)× acc(o → n). (2.14)

3. Determine the probabilities of generating a particular configuration.

4. Derive the condition which needs to be fulfilled by the acceptance rules.

It is instructive to apply the preceding recipe to the ordinary Metropolis
scheme. In the canonical ensemble, the number of particles, temperature, and
volume are constant (see Figure 8). The partition function is

Q(N,V, T) ≡ 1

Λ3NN!

∫
drN exp[−βU(rN)], (2.15)

where Λ =
√

h2/(2πmkBT) is the thermal de Broglie wavelength. From the
partition function it follows that the probability of finding configuration rN is
given by distribution is

N (rN) ∝ exp[−βU(rN)]. (2.16)

Equations (2.15) and (2.16) are the basic equations for a simulation in the canon-
ical ensemble.



2.7 Monte Carlo Simulations 29

2.7 Monte Carlo Simulations

In the canonical ensemble, we have to sample distribution (2.16). This can be
done using the following scheme:

1. Select a particle at random and calculate the energy of this configuration
U(o).

2. Give this particle a random displacement (see Figure 8),

r(o) → r(o) + ∆(Ranf − 0.5),

where ∆/2 is the maximum displacement. The value of ∆ should be cho-
sen such that the sampling scheme is optimal (see section 2.4). The new
configuration is denoted n and its energy U(n).

3. The move is accepted with a probability (see equation (2.10))

acc(o → n) = min (1, exp{−β[U(n) − U(o)]}) . (2.17)

If rejected, the old configuration is kept.

An implementation of this basic Metropolis scheme is shown in Section 2.2
(Algorithms 5 and 6).

2.8 Justification of the Algorithm

The probability of generating a particular configuration is constant and inde-
pendent of the conformation of the system

α(o → n) = α(n → o) = α.

Substitution of this equation in the condition of detailed balance (2.13) and sub-
stitution of the desired distribution (2.16) gives as condition for the acceptance
rules

acc(o → n)

acc(n → o)
= exp{−β[U(n) − U(o)]}. (2.18)

It is straightforward to demonstrate that acceptance rule (2.17) obeys this con-
dition.

2.9 Sampling rejected states: a heresy?

The Markov Chain Monte Carlo method (MCMC) of Metropolis et al. was
designed to estimate the average properties of systems (many-body systems
are but one example) with a very large number of accessible states (“config-
urations”). To achieve this, the algorithm generates a random walk through
configuration space such that any individual state is visited with a frequency
proportional to its (Boltzmann) weight. The desired estimate is then obtained
as an unweighted average over visited states.

In order to visit states with the correct frequency, the MCMC algorithm
generates random trial moves from the current (“old”) state (o) to a new state
(n). In the case of molecular systems, such a move might for instance be the
displacement of a single particle. These trial moves may be either accepted or
rejected. The acceptance criterion is chosen such that the probability to find
the system in state (i) is proportional to the Boltzmann weight (PB(i)). The
standard “dogma” of MCMC simulations is that rejected states should not be
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included in the sampling. As a consequence, conventional MC algorithms are
rather wasteful, because they tend to generate many trial states (often a major-
ity) that are not used in the computation of averages. In this section, I argue
that we can do better: the properties of rejected states can be included in the
sampling. In the case where many trial states are generated simultaneously, the
new approach may lead to a dramatic improvement in the statistical accuracy
of Monte Carlo simulations [26].

MCMC algorithms traditionally construct a Markov-Chain using two steps:
a. Starting from the current (old) state (o) a trial move is attempted to a new
state (n) according to a trial probability α. b. The trial state is then accepted
or rejected according to an acceptance rule that ensures detailed balance (or, at
least, the less strict balance [27]) between sampled microstates.

πij = αijPacc(ij) ∀ i 6= j, πii = 1 −
∑

j

πij (2.19)

∑

j

πij = 1, ∀i (2.20)

Here, and in what follows, we use the term “balance” to describe algorithms
that leave the equilibrium distribution invariant. That is: when we apply one
Monte Carlo step to an equilibrium distribution of initial states, the average
flux into any given state i is exactly balanced by the total flux out of that state.
As a consequence, the probability density is not changed by such the Monte
Carlo algorithm. The stronger “detailed balance” condition states that, for any
pair of states i and j in an equilibrium ensemble, the average flux from i to j is
equal and opposite to the flux from j to i. Clearly, the latter condition can only
be satisfied if the algorithm satisfies microscopic reversibility: i.e. if j can be
reached from i then there is a finite probability to carry out the reverse move
from j to i.

In Eqn.(2.19) πij is the ijth element of the Markovian transition matrix. For
i 6= j, πij is given by the product of two terms: the probability of attempting a
trial move from state i to state j, and the probability of accepting j as the new
state. The transition matrix is a stochastic matrix therefore its elements must
obey Eqn.(2.20).

In a Monte Carlo simulation, thermodynamic properties are evaluated as
the expectation values of the corresponding instantaneous properties. When
a trial move is not accepted, the instantaneous property of the old state has to
be recounted in the calculated average and no information about the rejected
state is included in the computation of averages. Let us now consider MC
algorithms that satisfy detailed balance. The condition of detailed balance is
satisfied whenever equation (2.21) holds for any pair of old states (o) and new
states (n).

ρoπon = ρoαonPacc(on) = ρnαnoPacc(no) = ρnπno (2.21)

Equations (2.19-2.21) do not uniquely define Pacc(on): there is therefore a
relative freedom in the choice of the functional form. The most popular choice
is the Metropolis rule [15], but (infinitely many) other valid rules exist. Be-
low we present a more general derivation that allows the evaluation of equi-
librium properties by combining importance sampling and local sampling of
microstates using any combination of valid MCMC schemes. To make this ex-
plicit, we consider two sets of transition probabilities (that may or may not be
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the same) : the first describes a conventional sampling of microstates while
the second describes the local sampling of a group of microstates that are con-
nected to the individual microstates of the first Markov chain. We use the term
“Markovian web” to denote the set of microstates thus connected.

We assume that the Markov chain that connects the states of the Markovian
web satisfies detailed balance. Then equation (2.21) applies for any given pair
of connected microstates {o,n}. From equations (2.20) and (2.21) the balance
condition may be derived:

∑
m

ρmπweb
mn =

∑
m

ρnπweb
nm = ρn

∑
m

πweb
nm = ρn (2.22)

Let us now consider the sampling of an equilibrium property A of the sys-
tem:

〈A〉ρ =
∑
n

Anρn

/∑
n

ρn (2.23)

We now substitute ρn from Eqn.(2.22). By changing the order of summation
(integration in the continuum case) over all microstates we get:

∑
n Anρn∑

n ρn
=

∑
n

∑
m Anρmπweb

mn∑
n

∑
m ρmπweb

mn

=

∑
m ρm

∑
n Anπweb

mn∑
m ρm

∑
n πweb

mn

=

∑
m ρm

∑
n Anπweb

mn∑
m ρm

⇔ 〈A〉ρ =

〈∑
n

πweb
mn An

〉

ρm

(2.24)

Where the last step required the use of equation (2.20). Equation (2.24) is
exact and is in principle sufficient to describe how the expectation value of a
property can be evaluated by combining importance sampling and integration
over the local states of a Markovian Web; i.e for every state {m} sampled via
importance sampling an integration is performed over all {n} states for which
πweb

mn 6= 0. Equation (2.24) is quite general and it may be implemented in many
ways. In the present paper, we focus on an application to Monte Carlo sam-
pling of the equilibrium properties of a simple off-lattice system. The transition
matrix of the Markov chain that is used to generate the Markovian Web can be
separated in two terms as in the case of MCMC discussed above (Eqn. (2.19)).
The sum in equation (2.24) may be broken into two terms using Eqn. (2.19):

∑
n

Anπweb
mn =

∑

n 6=m

Anπweb
mn + Am


1 −

∑

n 6=m

πweb
mn


 (2.25)

Substituting (2.25) into (2.24) and using the fact that
∑

n 6=m αmn = 1, a new
expression for the average properties is derived:

〈A〉ρ =

〈 ∑

n 6=m

αmn [AnPacc(mn) + Am (1 − Pacc(mn))]

〉

ρm

(2.26)

The summation in equation (2.26) may be performed in many ways. One
possible approach is to express the sum as a weighted average over the trial
probability αij.
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〈A〉ρ =
〈〈AnPacc(mn) + Am (1 − Pacc(mn))〉αmn

〉
ρm

(2.27)

Equation (2.27) implies that the sum required for equation (2.24) can be com-
puted as a weighted average, where the weight is the trial probability αij. In
practice, this means that we perform not only an importance sampling of the
states n with corresponding weights ρm, but we also generate a finite subset of
the trial states n, with weights αmn.

We stress that equation (2.24) is general, whereas equation (2.27) represents
one of the many possible implementations of the general case.

An important aspect of the proposed method is that the transition matrix
of the Markovian Web is completely independent from the Markovian matrix
that is used to generate the importance sampling ( the importance sampling
could even have been generated by completely different method, e.g. constant-
temperature Molecular Dynamics ). In other words: the two transition matrices
may differ in their trial probability or in their acceptance probability (e.g. use
of Metropolis or the symmetric rule) or in both.

It is advantageous to consider situations where the number of trial states is
very large. Such a situation arises for instance when the system under consid-
eration can be decomposed into non-interacting subsystems. An example is a
system consisting of particles with intermolecular interactions that can be trun-
cated beyond a finite cut-off distance rc. If we divide the system into cells with
diameter d ≥ rc, then non-adjacent cells will not interact. This means that the
probability of acceptance of a trial move in one such cell does not depend on the
possible outcome of a trial move inside all other non-adjacent cells. This makes
it possible to construct “parallel” trial moves that attempt to move particles in
a set of N non-interacting cells. In normal MCMC, the result of such a parallel
move is that the system ends up in one specific final state (out of the 2N possi-
ble states). With the present algorithm we can do much better. By generating
M trial states in each of the subsystem we can evaluate the term

∑
Anπweb

mn by
summing all (M+ 1)N possible combinations of trial states for the subsystems.
The number of trial microstates can be very large. Hence, special care should
be taken to compute averages over trial states efficiently. Since the subsystems
are independent one can calculate the probability of finding the total system in
a specific macrostate (e.g. the collection of microstates with the same potential
energy) as the convolution of the probabilities of the subsystems. It should be
noted that the use of the convolution or even the independence between the
subsystems is not a necessary requirement but it is expected to be crucial in the
case of large number of possible trial states.
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