
Use-Case Analysis

Use-Case Analysis
! What is it?

! An informal, user-friendly, technique useful for
functional requirements analysis and specification

! From where did it come?
! Ivar Jacobson, a Swedish software engineer at Ericsson,

now with Rational, in a method called OOSE (Object-
Oriented Software Engineering). Originally called “Usage
cases”

! Now “part of” UML

Definition of “Use Case”

! “The specification of sequences of actions
that a system, subsystem, or class can
perform by interacting with outside
actors”

 (UML Reference Manual, Rumbaugh,
Jacobson, and Booch).

Purpose of a “Use Case”

! “to define a piece of behavior of a [system
or subsystem or class] without revealing
the internal structure of the [system]

 (UML Reference Manual, Rumbaugh,
Jacobson, and Booch).

UML References

Importance of Use Cases

! At least one popular methodology (the
Rational Unified Process, based in part on
Ivar Jacobson’s earlier OOSE) is said to be
Use-Case Driven,

! meaning that most development activities
are traceable back to the use cases as
defined in agreement with the user or
customer.

Nonetheless

! Use cases alone do not constitute a
complete SRS.

! For example, they focus on the
functional requirements exclusively.

Use-Case References

recommended:

not recommended:

Other Implications

! Use cases could be used for other
types of design, and system analysis,
not just software.

! Once you know about them, it is hard
to imagine an engineering project or
business process of almost any kind
starting without them.

Characteristics of
Use-Case Analysis

! Use-cases: The specific ways in which the
system is used.

! Each use-case expresses a “compete
thought” or end-to-end transaction.

! A “black-box” specification; does not deal
with internal structure.

Some Key Components of
Use-Case Analysis

! Actors: Entities that use or are used by
the system; typically people, but could also
be other systems or devices as long as they
are outside the system being specified.

! Connections from Actors to Use-Cases

! Relationships between Actors or between
Use-Cases

Actors

! Actors are characterized not by the identity of
the user or other, but rather by the role played by
the actor.

! One person can be several different actors in
different roles.

! One actor can be played (at different times) by
several different persons.

! An entire committee could be one actor.
! An actor need not be a living thing; it could be

another subsystem.

More on Actors

! Actors are not part of the system in
question; they supply input to and receive
output from, to the system.

! In other words, actors collectively define
the environment of the system.

! This does not preclude the possibility of an
object in the system standing for an actor.

Minimum Requirement for a
Use Case

! Verbal description

Common Components of a
Use Case

! Name
! Symbolic label
! List of actors
! Initiator
! Verbal description

Initiator

! The initiator of a use case is the
actor that starts the flow of events.

Brief Use-Case Description

! OCI: Order from catalog
! Actors: customer, sales rep., shipping dept.
! Initiator: customer
! Description: Customer calls to order items from the

catalog. The sales rep. identifies the item numbers, verifies
that the items are in stock, and confirms the order with the
customer, giving him the order number. The sales rep. then
forwards the order to the Shipping dept.

label for this use-case
name of this use-case

Flow of Events

! Could be more readable for the description
to be an enumerated list of events, e.g.:
1 Customer calls to order from catalog.
2 Sales representative identifies item numbers.
3 Sales representative verifies stock.
4 Sales representative confirms order.
5 Sales representative gives order number to Customer.
6 Sales representative passes order to Shipping.

Flow-of-event descriptions could
contain iteration

! An order could contain multiple items. In
this case, the event flow should show
something like:
! For each item to be ordered:

! Sales representative checks catalog number.
! Sales representative verifies stock.
! Sales representative records item.

! Similarly, flow of events could contain
conditional (if-then-else) behaviors.

Use Case Diagrams

! For visualization of use case interactions;
diagrams are not the use cases themselves.

! Don’t tell the whole story

! Useful in brainstorming

! Used in software tools, such as:
! Rational Rose
! iLogix Rhapsody

Icon for an Actor

Note: Actors are typically drawn in this “anthropomorphic” way
even when the actors aren’t people.

Examples of Actors

Shipping Dept.Customer

Alternate Actor Icons in UML

Customer

«actor»

Customer

«actor»

Customer

Visual Icon

Textual Stereotyping

Textual & Visual
Stereotyping

UML Use of “Stereotypes”

! The « … » notation called “guillemets”,
(used for quotes in French, Italian,
and Spanish)

! These usually indicate the name of a
“stereotype”, defined as an informal
extension of the UML.

Icon for a Use Case

Noting the Initiator

Customer

Sales Rep.
Order from

catalog

Shipping Dept.

«initiates»

for a mail-order catalog
business

Customer

Sales Rep.
Order from

catalog

Shipping Dept.

«initiates»

Symbology for a simple use-
case

actor icon

Customer

actor name

Sales Rep.
Order from

catalog

oval symbolizes use-caseconnection

system boundary Shipping Dept.

Class Exercise

! Identify several other possible
use-cases in the catalog-order
enterprise.

! For each use case, indicate the
actors, initiator, and flow of events.

Steps in Use-Case Analysis

! Identify system boundaries
! Identify actors:

!Recall: an actor is an entity playing a
particular role with respect to the
system.

Steps in Use-Case Analysis (cont’d)

! Identify use cases themselves:
! Every use case has at least one actor.
! A specific actor initiates the use case.
! The same actor may participate in multiple use

cases, as initiator in some and not in others.

! Create the description including flow of
events

! Identify clarifying scenarios where helpful
! Provide additional information (see later)

Scenarios of a Use Case

! A “scenario” is a single path through the
event flow. For example, if there is a
conditional part, only one branch is taken in
the scenario.

! Obviously we can’t always enumerate all the
scenarios; there might be an infinite set of
them. If the use case involves iteration,
only a finite number of iterations are used
in the scenario.

Scenarios (continued)

! Often there will be a “principal”
scenario, and several secondary
variations.

A Catalog Order Scenario (1 of 3)

! Alice calls company.
! Bert answers the telephone.
! Alice indicates she wishes to place an order.
! Bert asks how the order will be paid.
! Alice indicates via credit card.
! Bert asks for the card number,billing address, and

expiration date.
! Alice provides the above info.

A Catalog Order Scenario (2 of 3)

! Bert asks for the first item.
! Alice responds with first item.
! Bert asks for quantity of first item.
! Alice responds with quantity of first item.
! Bert records first item with quantity.
! Bert asks for second item.
! Alice responds with second item.
! Bert indicates second item out of stock; does

Alice wish it to be back ordered?
! Alice declines to order item.

A Catalog Order Scenario (3 of 3)

! Bert asks for third item.
! Alice responds that there are no more items.
! Bert asks for shipping address.
! Alice indicates that it is the same as the billing

address.
! Bert informs Alice of expected shipping date and

provides order number.
! Bert thanks Alice.
! Alice hangs up.
! Bert transmits order to Shipping dept.

Use-Case Advice
(Larry Constantine and others)

! Write in the active voice.

! Pair responses with the events that invoke them.

! Identify domain objects that clearly are part of
the application context (such as “catalog”,
“inventory”, “fleet” (of automobiles)).
[A domain dictionary or glossary could be used.]

Sequence Diagram for a Scenario
Bert: Sales Rep Shipping Dept.

Call on telephone

… etc.…

Alice: Customer

Answer telephone

Indicate desire to order

Request payment method

Indicate credit card

Request credit card info

Provide credit card info

Request first item

Inform of shipping date

Send orderThank

Sequence Diagram
for an ATM Withdrawal Use Case

Customer

Card
Reader

Display
Screen Keypad

Cash
Dispenser

Insert card

Request PIN

Enter PIN

Request Amount

Enter Amount

Authorizer

Card inserted

PIN entered

Amount entered

Dispense cash

Tell to take cash

Take cash

… etc.…

Read display

Read display

Read display

Collaboration Diagram
(= “folded” sequence diagram with message numbers)

Customer

Card
Reader

Display
Screen Keypad

Cash
Dispenser

Authorizer

1: Insert card
2: Card

 inserte
d

3: R
eq

ue
st

PI
N

5: Enter PIN

9: Enter Amount

6:
 P

IN
 e

nt
er

ed

7:
Re

qu
es

t a
mou

nt

12
: T

ell
 to

 t
ak

e c
as

h

10
: A

m
ou

nt
 e

nt
er

ed

11: Dispense cash
14: Take cash

4, 8, 13:
Read display

Scenarios and Exceptions

! One possible use of scenarios is in
demonstrating representative exceptional
or “what if” behaviors (as opposed to the
principal behavior).

! Example: In the catalog order use case,
what if the customer hangs up or
connection is lost in the middle of the
dialog?

Scenario Types (Bruegge)

! Visionary scenario: Describes future
scenario

! Evaluation scenarios: Describe user tasks
against which system is evaluated

! Training scenarios: Used for tutorial
purposes

! As-is scenarios: Describe current situation
(during reengineering)

UML Package Notation
Used for Grouping; Could be Used to Group Use Cases

Reservation

Package name
Use cases in package

Car Rental Example
How might the use cases be packaged?

Prospective
customer

Customer

Driver

Reservation
staff

Inquire availability
and cost

Make reservation

Issue contract

Checkout vechicle

Issue invoice
Desk staff

Checkout
staff

Checkin
staff

Checkin vechicle

Vehicle Control

Reservation

Car Rental Example
with Two Packages

Prospective
customer

Customer

Driver

Reservation
staff

Inquire availability
and cost

Make reservation

Checkout vechicle

Desk staff

Checkout
staff

Checkin
staff

Checkin vechicle

Use of Packages

Packages may be used in the transition to
a design, and ultimately coding.

However, these connections would not
normally be part of the initial discussion
with the customer.

Relations between Use Cases

Inclusion among use-cases

Customer
Sales

representative

Place order using
credit card

Verify credit card

«includes»

Extension among use-cases

Customer

Place order using
credit card

Verify credit card

«includes»

Place order

«extends»

Sales
representative

extends vs. uses

! «includes» means this use-case makes use
of another use-case, as if a kind of
subroutine. This allows us to not have to
repeat the included use-case in the
description of the including use-case.

! «extends» means that this use-case is a
specialization of another use case.

Note: «includes» was formerly called «uses».

«extends» can be used to impart a
hierarchical abstraction structure

to use cases

Catalog order
transaction

Order items Inquire about
order

Complain about
order

«extends»

Options of a use case

! Example: During order processing,
the sales representative offers to
tell the customer about current
specials.

! Such options should be mentioned as
an annex to the other use case items.

Actor Hierarchies
are possible, similar to extensions

Prospective
customer

Customer

Driver Reservation
staff

Desk staff Checkout
staff

Checkin
staff

Office staff Lot staff

Staff

«extends»

Caution about Structuring
Use-Cases

! Use-case structuring is obviously
analogous to structuring in object-
oriented systems.

! However, one should not infer that
use-case structure implies anything
about internal structure of the
system.

Use-cases vs. Requirements

! A use-case describes one “unit” of
functionality.

! A single informally-specified functional
requirement could translate into multiple
use-cases.

! A single use-case could also be involved in
satisfying multiple requirements.

Use-cases vs. Requirements (cont’d)

! Collectively, the use-cases ideally
should account for all of the desired
functional requirements.

! Non-functional requirements may
annotate use-cases, but don’t get
represented as use-cases directly.

Further Possible Components
of

Use Cases

Goals

! A goal describes the higher purpose
of the execution of the use case.

! Example: Goal for catalog order: A
customer wishes to order products
from the company.

Pre- and Post-Conditions

! Some use-cases are not meaningful at
arbitrary times, but instead only when the
system is in a state with certain
properties. Such properties are called pre-
conditions.

! Similarly, the use-case might leave the
system in a state known to satisfy one or
more post-conditions.

Example:

! For the car-rental enterprise, the use case
“checkin vehicle” has the pre-condition

vehicle is rented to driver
and the post-condition:

vehicle is on site
 & vehicle is not rented to a driver.

! For the use-case “checkout vehicle”, these
conditions are reversed.

Invariants

! A condition that is a pre- and post-
condition for all use cases is called an
invariant.

! Example: Total vehicles =
vehicles rented

 + vehicles available
 + vehicles in repair
 + vehicles in scrap.

Optional Triggers

! A trigger is an event that causes the use
case to be run.

! Example: A catalog order is triggered by a
phone call.

! This is similar to a pre-condition, but is a
dynamic event rather than a condition.

Exceptions

! If a use case cannot be completed as
described, an exception is said to
occur.

! The description can indicate aspects
of the state and output in such cases.

Alternative to Exceptions

! A use case may be allowed explicit
success and failure outcomes, each
with its own post condition.

Precedence among Use-Cases

! When one use case is used to
establish a pre-condition for another,
the two may be linked by «precedes».

! One use of precedence is to factor a
use-case into sub-cases, to avoid
repetition among different sub-cases.

Precedence Example

Perform
Trade

Stock-trading example:

could
factor
into

Enter Buy
Order

Get
Portfolio

Enter Sell
Order

«precedes»

«precedes»

Subset of “Top 10 Use-Case Pitfalls”
by Susan Lilly, Software Development Magazine, Jan. 2000

http://www.cs.uwf.edu/~italbot/cen5990/lib/use_case_pitfalls.html

! The use cases aren’t written so the customer can
understand them.

! The system boundary is undefined or inconsistent.
! The use cases are written from the system’s (not

the actors’) point of view.
! The actor names are inconsistent across use cases.
! The use cases don’t correctly separate actors

based on functional entitlement.
! The use-case specifications are too long or

confusing.

Addendum to Assignment

Due Monday

CS 121

Develop a Set of Use Cases

! Regarding the requirements that were
elicited in the previous exercise:
! Enumerate in name only as many use cases as

would be needed to define the scope of the
software.

! Give detailed description of any five of those
use cases, using the attached template.

! Give a use-case diagram showing your five cases
together.

Use-Case Template
Use the following template for use cases:
! Label
! Name
! Goal
! Actors
! Initiator
! Description
! Pre-conditions
! Post-conditions
! Options (if present)
! Scenario, if helpful in clarifying

Traceability Matrix

! Provide a Traceability Matrix, which
lists each of the requirements stated
here and identifies the use cases that
cover those requirements.

Additional Points on
Use Cases

Do Not use Use-Cases to Fully
Decompose into a Design

! Factoring should be used to simplify the
description of use-cases.

! Avoid the temptation of making use-case
decompositions into design.

! Use-cases are customer language, not
design language or pseudo-code. They
describe what, not how.

! There are other tools that are better-
suited to the design phase.

Uses of Use-Cases
across Development Phases

(Bruce Douglass, “Doing Hard Time”)

! Analysis phase:
! Suggest large-scale partitioning of the problem

domain
! Provide structuring of analysis objects (i.e.

actors and sub-systems)
! Clarify system and object responsibilities
! Capture new features as they are added
! Validate analysis model

Uses of Use-Cases across Development Phases
(Bruce Douglass) (cont’d)

! Design phase:
! Validate the elaboration of analysis models in the

presence of design objects

! Coding phase:
! Clarify purpose and role of classes for coders
! Focus coding efforts

! Testing phase:
! Provide test scenarios for validation

! Deployment phase:
! Suggest iterative prototypes for spiral development

Levels of Use Cases

! These ideas are from Use Cases: Requirements in Context,
Daryl Kulak and Eamonn Guiney, ACM Press, 2000.

! Four iterative levels for specifying use cases:
! Façade: Outline and high-level descriptions
! Filled: Broader and deeper descriptions
! Focused: Narrowing and pruning
! Finished: Touch-up and fine-tuning

! See the reference for example worked out at all levels.

Façade Use-Case Components

! Name
! [Goal] (I added this.)
! Summary
! Basic course of events

Filled Use-Case Components

! Name
! [Goal]
! Summary
! Basic course of events
! Alternative paths
! Exception paths

Focused Use-Case Components

! Name
! [Goal]
! Summary
! Basic course of

events
! Alternative paths
! Exception paths

! Extension [Option]
points

! Trigger
! Assumptions
! Preconditions
! Postconditions
! Related business

rules

Business Rules

! Business rules are requirements that
represent constraints on behaviors, rather
than behaviors themselves.

! Examples:
! All transactions are in U.S. Dollars.
! Valid operators license is required in order to

rent a car.
! Late-fee is assessed for enrollment after the

second week of the semester.

Finished Use-Case Components

! Same components as in the Focused
iteration, just more polished.

UML Ways of Clarifying Complex
Behaviors in Use Cases

! These are more technical and may be more
appropriate in the design phase. However,
sometimes they can clarify a use case:
! Sequence diagram: shows messages between actors and

sub-systems
! Collaboration diagram: a sequence diagram organized as a

directed graph rather than as a linear sequence of
messages.

! State chart: Elucidates behavior in terms of properties
of state

! Timing diagram: a sequence diagram with a time metric
applied to the sequence dimension

