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The dot plot is an extremely useful tool for obtaining pictorial representations of quan-

titative information.1 This display method is very flexible and potentially applicable to

any situation where numeric values are associated with descriptive labels. For example, dot

plots can be used to depict raw data, frequency counts, descriptive statistics, and parameter

estimates from statistical models. A carefully constructed dot plot contains an enormous

amount of information. More important, a dot plot can convey that information in a way

that overcomes some of the problematic elements of its closest “competitors,” the bar chart

and the pie chart. This article will introduce the dot plot, explain its major features, and

provide some example applications. The discussion will then move on to explain the dotplot

function in the lattice package of the R software environment and illustrate the ways that

this function can be adapted to produce a wide variety of dot plots.

DEFINITION AND EXAMPLES

A dot plot is a two-dimensional graphical display of objects, showing some quantitative

characteristic of those objects. One axis of the dot plot (usually the horizontal) is a scale

covering the range of quantitative values to be plotted. The other axis (usually the vertical)

shows descriptive labels that are associated with each of the numeric values.2 The data

objects usually are sorted according to the quantitative values. Plotting symbols are placed

within the display area of the dot plot, locating each data object at the intersection position

for its label on the vertical axis and associated numeric value on the horizontal axis. While

this simple definition covers the basic features of the dot plot, it is important to emphasize

that the utility and flexibility of such a display come from the details that are included in

its construction. Let us consider several examples that will illustrate the dot plot’s various

features and advantages.

Basic Data Display

The simplest application of the dot plot is to display the empirical distribution of values

on a single variable. Of course, there are other univariate graphs that do the same thing



(e.g., the histogram, the box plot, etc.); but, the dot plot is the only kind of display that

explicitly incorporates labeling information such that the reader can determine immediately

which observations correspond to specific data values. Of course, the amount of data that

can be contained within a single dot plot is somewhat limited. But, given sufficient clarity

in the rendering device, a dot plot can provide data values for a surprisingly large number

of observations.

Figure 1 shows a dot plot of policy priority scores for the American states in 1992 (Jacoby

and Schneider 2001). This variable is based upon the states’ proportionate spending levels

across fifteen program areas. Larger values on this variable indicate that a state spent

more on a set of policies that Jacoby and Schneider labeled “collective goods,” including

highways, parks, law enforcement, and so on. Smaller values correspond to more spending

on “particularized benefits” such as welfare, health care, and employment security. This

variable is measured at the interval level, so the specific numerical values are arbitrary;

however, differences in the scores are meaningful and interpretable as proportions. For

example, if state A has a score of 0.50 and state B has a score of 0.52, then B spends 2%

more of its funds on collective goods policies than state A (or, alternatively, B spends 2%

less on particularized benefits policies than A).

The information in Figure 1 is easy to interpret. The labels in the margin of the vertical

axis are the state names. The spending priority score for each state can be determined by

examining the location of the plotted point within that row: The farther to the right, the

larger the proportion of the state’s budget devoted to collective goods; the farther to the

left, the greater the state’s proportionate spending on particularized benefits.

The dot plot of a univariate dataset is effectively the same as a transposed quantile plot

of the data. Therefore, the display shows the empirical cumulative distribution function for

the variable. This, in turn, provides information about distributional shape. The general

rule is that local density in the data is reflected by the local slope of the plotted points.

Shallow local slope corresponds to relatively sparse regions within the distribution (e.g., the
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tails of a unimodal distribution) while steep or nearly vertical local slope indicates a densely-

populated segment within the variable’s range (i.e., a mode). Thus, the single steep array of

points in the central region of Figure 1 indicates that the distribution of spending priority

scores is unimodal. And, while the distribution appears to be nearly symmetric (because

the shallower arrays of points near the upper and lower ends are about the same size), the

lower tail of the distribution is slightly more pronounced than the upper tail (the shallow

string of points in the lower left is somewhat more pronounced than that in the upper-right

corner of the display).

The dot plot enables visual estimates of summary statistics for the distribution. For

example, the extremes are easily identified, at about 0.498 and 0.546. The median is the

data value that occurs exactly halfway down (or up) the vertical axis; here, it appears to be

slightly more than 0.52 (say, about 0.522). The interquartile range is the difference between

the values that fall one-fourth of the way up from the bottom, and one-fourth of the way down

from the top. These values are about 0.515 and 0.530, respectively, yielding an estimated

IQR of about 0.015. The visual estimates (honestly, I didn’t cheat by looking at the data

values!) are very close to their more precisely-calculated counterparts: The five-number

summary for these data is (0.497, 0.518, 0.525, 0.531, 0.547) and the IQR is 0.013.

The dot plot also facilitates the identification of particular states within the overall dis-

tribution, as well as differences between specific states. The horizontal dotted lines in the

graph facilitate table look-up (i.e, the ability to associate individual data values with labels).

For example, Figure 1 makes it easy to see that Massachusetts is the state that spends the

highest proportion of its budget on particularized benefits while Wyoming spends the most

on collective goods (i.e., these observations have the lowest and highest scores, respectively).

And, South Carolina devotes about one percent more of its budget to collective goods than

does Connecticut (i.e., their scale scores are about 0.52 and 0.51, respectively). In summary,

the dot plot provides a great deal of information about both a variable’s distribution and

the specific observations within the data.
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Figure 2 illustrates a variation of the basic dot plot, showing state education spending for

fiscal year 2000, in dollars per capita. This display provides exactly the same kind of infor-

mation that was discussed with respect to Figure 1. But, now, the varying-length horizontal

lines emphasize the shape of the point array more clearly. The absence of a shallow-sloped

string of points in the lower left corner indicates that there is positive asymmetry in this

distribution. Furthermore, the separation between the top two points and the remaining

data suggests that Vermont and Alaska might be considered mild outliers, relative to the

rest of the distribution.

Note that the horizontal dotted lines in Figure 2 all emanate from the zero point on the

horizontal axis. Therefore, the line lengths for different states can be compared to facilitate

magnitude judgments about the data values. For example, it is easy to see that Vermont and

Alaska each spend more than twice the per capita amount on education than Massachusetts

and Florida. Note that such magnitude comparisons were inappropriate for the interval-level

data that were displayed in Figure 1. Therefore, in order to discourage such interpretations,

the horizontal lines in that earlier graph extended across the entire width of the plotting

region. Thus, careful attention to the details of a dot plot can affect the kind of information

that readers are able to extract readily from the display.

Dot Plots for Comparing Data Values

Dot plots are very useful for situations where the objective is to compare repeated mea-

surements of a single variable across a set of observations. As an example, Figure 3 shows

state education expenditures for 1990 and 2000. The data values are dollars per capita,

adjusted for inflation, so they are directly comparable across the ten-year time span. Each

state’s two data values are shown as a pair of points plotted along a single horizontal line

for that state. The major visual feature of the display is that the “x” falls to the right of the

“o” in almost every horizontal line.3 Of course, this shows that the vast majority of states

increased their education spending across the decade. The two exceptions are Alaska, which
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showed a fairly sharp decrease in per capita education spending and Maine, which showed

virtually identical spending levels in both years.

Note that, unlike Figure 2, the horizontal lines in Figure 3 do not emanate from zero,

even though the data values are actually ratio-level quantities. The reason is that the display

is intended to emphasize the differences between the respective states’ expenditures across

the years, and not their absolute levels of spending. Therefore, the horizontal dimension

of this dot plot only runs between a pair of arbitrary values just outside the minimum and

maximum data values. This serves to increase the physical distance between the two plotting

symbols on each line, making it easier to judge the sizes of each state’s expenditure change.

In this case, most states showed an increase of about $250-$300 per capita. However, three

states (New Hampshire, Michigan, and Vermont) stand out with much larger increases in

their respective spending levels.

In Figure 3, the states are sorted by their 1990 education expenditures, so the dot plot

effectively uses that year’s distribution as a baseline for comparison. This display is useful

if the main question is “How did the states’ expenditures change after 1990?”. On the other

hand, one could ask the alternative question, “From where did the states come, prior to

2000?”. In that case, the latter year would probably be a better benchmark for comparison.

Figure 4 shows the same information as Figure 3, but with states now sorted according

to their 2000 education spending values. Here, it is immediately apparent that several of

the states that spent the most in 2000 also showed the largest increases in spending across

the decade. And, while Alaska’s spending actually decreased over time, it still shows the

second-highest per capita spending on education. Once again, the “trick” in constructing

an effective dot plot lies in adjusting the details to facilitate the kinds of judgments that the

analyst wants readers to make when interpreting the graphical information in the display.

The basic dot plot data display can be adapted very easily to enable comparisons across

subgroups of observations. For example, Figure 5 is a divided dot plot, showing individual

state policy priority scores within separate regions. Again, a great deal of information can
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be extracted from this display. The data values are sorted within the regions. And, the order

of the regions within the plot is determined by their respective medians. This makes it easy

to see that northeastern states tend to have the smallest scores, followed by midwestern,

southern, and western states. Visual inspection indicates that the region medians fall at

about 0.512, 0.523,0.525, and 0.530, respectively. The actual, calculated, medians are 0.512,

0.525, 0.527, and 0.533 (again, I didn’t cheat in my visual estimates!).

Intra-region variability can be assessed through the slope of the point array for a partic-

ular region, or through the spread of its points along the horizontal axis. Hence, in Figure

5, western states show the greatest variation in priority scores (the slope is shallowest for

that region, and the points are spread out wider than any other region). In contrast, south-

ern states seem to show the least dispersion; that region has the steepest array of points,

covering the narrowest interval on the horizontal axis. Of course, this same information

about regional differences could be obtained through other data analysis tools. But, it is

impossible to deny the ease with which it can be extracted from the dot plot. And, the

graphical display makes it easy to see potentially misleading elements of the data, such as

within-region outliers (e.g., Vermont in the northeast and California in the west), that might

affect the calculated values of regional summary statistics.

Statistical Summaries

Dot plots are certainly not limited to displays of raw data. They can also be used

very effectively to show summaries of data values within partitions of an overall dataset

either across subsets of the observations or across separate variables (or both). For example,

Figure 6 uses information drawn from the 2004 National Election Study to show percentage

differences in votes for Bush and Kerry across party identification categories. Since there are

only seven quantitative values (and, therefore, little potential for serious difficulties with table

look-up), the horizontal lines have been omitted from the interior of the display. This follows

Tufte’s (1983) dictum to “maximize the data-ratio” and produces a “cleaner” graphical

representation of the information. At the same time, a vertical reference line has been added

6



at the zero point on the horizontal axis. This provides a useful basis for evaluating the

quantitative information in the display, since it represents a position of partisan neutrality,

or equal voting support for both candidates.

Note that the plotted points in Figure 6 are not sorted by their quantitative values.

Instead, the ordering on the vertical axis is determined by the categories of the party iden-

tification variable which are, themselves, ordered according to the direction and intensity

of individual partisan attachments. This results in a nonmonotonic array of points that is

substantively interesting: It shows that nonstrong Democratic identifiers were less support-

ive of Kerry than independent leaners. This finding is somewhat contrary to expectations

based upon theoretical considerations, but it is a pattern that has been noticed many times

in the previous research literature (e.g., Petrocik 1974; Keith et al. 1991). To reiterate a

point made earlier, the same information could be drawn from a crosstabulation of party

identification versus 2004 voting choices. But, that would almost certainly take greater cog-

nitive effort on the part of the observer. With the graphical display, even the relatively mild

anomalous feature of the data passes the “interocular trauma test” quite easily.

When sample statistics are regarded as estimates of population parameters it is, of course,

desirable to incorporate some indication of the uncertainty in those estimates due to sampling

error. This is accomplished very easily in a dot plot, by adding error bars to the display.

Figure 7 uses more data from the 2004 NES to show the mean importance ratings that survey

respondents assigned to ten issues (scored on a one-to-five scale, with larger values indicating

the issue is more important). The symmetric horizontal “wings” around each plotted point

correspond to the 95% confidence interval for each mean. Again, the horizontal reference

lines are omitted from the dot plot, not only because of the relatively small number of points,

but also because they would interfere with visual perception of the error bars.

The plotted points in Figure 7 are, once again, sorted by their quantitative values. So,

it is easy to see that government health insurance was the regarded as the most important

issue (by a significant margin, since the confidence interval for that issue does not overlap
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the adjacent interval for women’s roles) while aid to minorities and environmental concerns

were viewed as the least important issues (again, by significant margins). While the exact

mean values for the remaining seven issues vary somewhat, they all fall within a relatively

narrow interval (between about 3.75 and 3.95) and the differences between them may well

be due to sampling error, since their confidence intervals all overlap each other.

A dot plot is a convenient and succinct way to report estimates from a statistical model.

As an example, Figure 8 shows the coefficients obtained when 2004 NES respondents’ gen-

eral attitudes toward government spending and services are regressed on their ideology,

party identification, and preferences toward federal spending in eleven specific policy areas.

Standardized coefficients are shown, because the independent variables are measured using

different units; ideology and party identification are seven-point scales (with larger values

indicating liberal and Democratic identifications), while the spending items are three-point

scales (with larger values indicating a preference for more spending in a policy area). Since

standard errors are usually considered inappropriate for standardized coefficients, no confi-

dence intervals are shown. However, different plotting symbols are used for variables whose

nonstandardized coefficients are statistically discernible from zero, using a one-sided test at

the 0.05 level. As in the two previous dot plots, horizontal lines are omitted from the plotting

area and a vertical dashed reference line is inserted at the zero point.

The dot plot in Figure 8 is particularly useful in this case, because researchers would cer-

tainly be more interested in the relative sizes of the regression coefficients, rather than their

exact numerical values. And, from the array of points in the display, it is clear that general

spending attitudes are not a simple additive function of policy-specific preferences. Instead,

they are affected by more general political orientations (ideology and party identification)

and feelings about spending that benefits particular beneficiaries (i.e., Social security, child

care, schools, poor people, and welfare). General spending attitudes are, basically, unrelated

to preferences about spending in foreign affairs, law enforcement, highways, and science. I
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have argued elsewhere that patterns like this are very revealing about the subjective nature

of public opinion toward government spending (e.g., Jacoby 2005).

ADVANTAGES OF DOT PLOTS

Dot plots are probably not very well known to most political scientists. They are covered

extensively in Cleveland’s work (e.g., 1993; 1994) on statistical graphics, I have used them

in several of my own works (Jacoby 2006; Jacoby and Schneider 2001), and they also appear

in recent articles written by a few other authors (e.g., Clinton, Jackman, Rivers 2004; Baker

2005; Jerit, Barabas, Bolsen 2006). But, it is definitely fair to say that the dot plot is a

relatively uncommon graphical display in the political science research literature. This is

unfortunate, because dot plots have some definite advantages over their “competitors” for

displaying labeled data: pie charts and bar charts.

First, there is a simple, practical advantage: Dot plots can show a larger number of data

points than either pie charts or bar charts. Pie charts are necessarily limited to a fairly small

number of distinct “wedges;” otherwise, visual perception of the quantitative information

becomes nearly impossible. With bar charts, the width of the bars necessarily becomes

narrower as the number of distinct data values increases. In fact, with a large number of

plotted values, a bar chart becomes virtually indistinguishable from a dot plot (e.g., think

of the graphs that Consumer Reports uses to show overall ratings of models within a given

category of product). As mentioned earlier, a dot plot can include a surprisingly large

number of points it is really only limited by the space available in the display medium. For

example, a dot plot with one hundred data values, displayed on a standard journal-size page,

could be interpreted very easily.

A second, theory-based, advantage is that dot plots facilitate relatively accurate graphical

perception. Visual processing of a pie chart requires the observer to make comparative

judgments about the angles, arcs, and/or sizes of the various wedges within the circular

diagram. In contrast, a dot plot only involves comparisons of point locations along a common
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scale. Cleveland and McGill (1984; 1985; also see Cleveland 1994) show that the latter task

is usually carried out much more accurately than the former.

With bar charts, a different problem emerges. A bar chart should be interpreted using the

relative heights (or widths) of the bars along a common scale. But, Cleveland (1984) argues

that bar charts actually encourage observers to make judgments based upon the relative sizes

of the bars within the display. And, if the scale in the bar chart begins at some arbitrary

value, then it is inappropriate to regard the lengths and/or areas of the bars as any sort

of meaningful information about the relative magnitudes of the quantitative values being

displayed in the chart. Figure 9A illustrates this problem, using a bar chart of the same

mean issue importance ratings that were shown back in Figure 7. The length of the bar for

“Govt. health insurance” is about twice the length of the bar for “Defense spending.” But

a glance at the horizontal axis shows that the mean importance rating for the former issue

is definitely not two times the size of the mean for the latter issue!

If magnitude judgments were appropriate for these data (which they are not), then one

could consider dealing with the preceding problem by setting the scale origin to zero on the

horizontal axis, as in Figure 9B. But, this creates still another problem. The distance from

the origin to the minimum plotted value (3.40, in this case) is much larger than the range of

values included in the display (3.40 to 4.10, or 0.70). This compresses the ends of the bars

near the right side of the display, and hampers visual perception of the relative lengths.

A properly-constructed dot plot avoids these problems by either extending the horizontal

reference lines across the entire width of the plotting region (as in Figures 1, 3, 4, and 5)

or omitting them entirely (as in Figures 6, 7, and 8). In either case, the display provides

no visual cues that would encourage inappropriate judgments about the relative sizes of the

data values. If magnitude judgments are appropriate for the data, then the reference lines

in a dot plot can be extended from the origin of the scale out to the plotted data values. Of

course, this is exactly what was done in Figure 2.
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A third potential advantage emerges when a dot plot is used to display the distribution

of values on a single variable. As explained earlier, such a display is effectively a trans-

posed quantile plot. It shows all of the data and, therefore, provides a particularly accurate

depiction of distributional shape. Just as with a quantile plot, a dot plot avoids potential

distortions that may be introduced by the binning process required to construct a more

traditional histogram.

CREATING DOT PLOTS IN R

Most statistical software can be used to generate dot plots. STATA, SPSS, and SYSTAT

all have routines that are either explicitly designed, or easily adapted, for this purpose.

Friendly (1991) provides macros that create dot plots in SAS. But, as is often the case, R

provides the most powerful facility and flexibility for creating this kind of graphical display

(R Development Core Team 2006).4 The cost involves learning the details of the R functions

that produce dot plots, along with the complexities (at least for beginners) in the ways that

these functions can interact with other aspects of the R environment.

Some General Principles

Before proceeding, there are three general points that it will be useful to keep in mind:

First, there are always multiple ways to achieve the same objective in R. Here, I will em-

phasize the dotplot function in the lattice package (Sarkar 2006). However, many of the

same displays could have been produced with the dotchart function of the traditional R

graphics system. More generally, there are always alternative strategies for preparing data

and supplying parameters to R functions, apart from those I will explain below.5

Second, trellis graphs (i.e., the type produced by the lattice package) are created by

issuing a general display function which, in turn, calls a panel function. The general display

function sets up the exterior components of the graph (i.e., axes, scales, titles, and so on)

while the panel function deals with everything within the plotting region, itself (i.e., points,
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reference lines, etc.). Distinguishing between these two components is important for specify-

ing any non- default parameter values in a graph (e.g., plotting symbols, line characteristics,

and so on).

Third, the lattice package effectively regards a dot plot as a scatterplot between a

categorical variable (or a factor in R nomenclature) and a quantitative variable (a vector in

R- speak). It is very useful to think about the dot plot this way when trying to produce

specific, non- standard, displays. And, it is also very helpful to keep this in mind when

trying to understand why the dot plot function sometimes produces strange and unexpected

results!

Creating Simple Dot Plots

In order to produce a dot plot of values stored in variable x, with labels in variable y,

and both x and y contained in an R data frame called dataset, one could use the following

general display function:

> dotplot(y ~ x, data = dataset, other optional arguments)

The only required argument in the preceding function is y ~ x. This is actually a simple

formula in the R modeling language; it will produce a dot plot with the labels from y listed

along the vertical axis, and corresponding points located at the proper horizontal location

according to their respective x values.6 The data argument is optional; of course it specifies

the data frame containing x and y. There are many other arguments that can be included

in the function call, and quite a few of them will be presented in the discussion below.

Let us begin with a very simple and small (in terms of the dataset size) example. Table

1 shows a subset of 15 observations sampled randomly from Otis Dudley Duncan’s famous

dataset on the prestige of various occupations. Here, we have only the occupation names

and the prestige scores assigned to each one. The following statements would load the lattice

package, read the data into an R data frame and create a dot plot, using the default settings

for the dotplot function:
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> library(lattice)

> occ.prest.subset <- read.table(occprest.txt, header = T)

> dotplot(occup ~ prestige, data = occ.prest.subset)

The resultant dot plot is shown in Figure 10. Note that the occupation labels appear in

alphabetical order along the vertical axis. This is problematic because the data values

are random with respect to this arrangement. Therefore, it is difficult to interpret the

information in the display. This occurs because R regards “occup” as a factor, with levels

defined by its unique values. And, unless told otherwise, R places the levels of a factor into

alphabetical order. That, in turn, determines the ordering on the vertical axis of the dot

plot.

The problem is fixed by changing the order of the factor’s levels. Given a factor (say,

factor) and a quantitative variable (say, X ), the reorder function can be used as follows to

sort the factor’s levels so that they are ordered according to the values of the variable7:

> reorder(factor, X)

We could apply this function to the occupational prestige data and generate a new dot plot

using the following statements:

> occ.prest.subset$occup2 <- reorder(occ.prest.subset$occup,

+ occ.prest.subset$prestige)

> dotplot(occup2 ~ prestige, data = occ.prest.subset,

+ aspect = 1.5,

+ xlab = "Prestige score for occupation",

+ cex = 1.25,

+ col = "black",

+ lty = 2)

The first statement creates a new variable called occup2 ; note the use of the fully-qualified

variable names. These direct R to the proper data frame (occ.prest.subset in this case) and

also guarantee that the new variable is added to that data frame, rather than left as a

separate object.8
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In the second statement, the new variable is used as the first component of the formula

in the call to dotplot. This statement also includes several new elements. The aspect

argument sets the height-width ratio for the graph; while not absolutely necessary in this

particular example, it does give the user more control over the final appearance of the dot

plot.

The xlab argument sets the label for the horizontal axis. As we saw in Figure 10, the

default label is the name of the variable plotted on that axis (which is often not very infor-

mative for readers). There is a corresponding ylab argument, but it is usually unnecessary

since the data labels, themselves, are often self-explanatory. Therefore, the default for ylab

in a dotplot is blank.

The next three arguments modify some of the default settings for the plotting symbols

and reference lines. The parameter specified in cex (an acronym for ”character expansion”)

sets the size of the plotting symbol. The value is proportional to the “normal” size, so we are

telling the function to make the plotting symbols one and one-fourth times the size of the

default symbol. The col argument sets the color of the plotting symbol (in Figure 10, the

points were blue, although that may not have been obvious with monochrome reproduction)

And finally, lty controls the style of the reference lines; the default, solid, lines are equivalent

to “lty=1”; “lty=2” produces dashed lines, and so on.9

Figure 11 shows the dot plot created by the preceding. Notice how several potential

problems in Figure 10 have been corrected in this new version: The data values are now

sorted, the plotting symbols are more prominent within the display, the horizontal reference

lines are a bit less obtrusive, and there is a descriptive label on the horizontal axis.

Using Panel Functions in Dot Plots

In the preceding example, the first three optional arguments (data, aspect, and xlab)

control exterior elements of the graphical display. Therefore, they are evaluated directly

by the general display function (i.e., dotplot), itself. The last three arguments (cex, col,
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and lty) are fundamentally different in that they are not interpreted directly by the general

display function. Instead, they are passed directly (but invisibly) to the relevant panel

function (conveniently called panel.dotplot) which actually controls the contents of the

plotting region. The following call to dotplot would also produce the graph shown in

Figure 11. But, it differs from the previous example in that the panel function is called

explicitly:

> dotplot(occup2 ~ prestige, data = occ.prest.subset,

+ aspect = 1.5,

+ xlab = "Prestige score for occupation",

+ panel = function (x, y) {

+ panel.dotplot(x, y,

+ cex = 1.25,

+ col = "black",

+ lty = 2})

The body of the panel function consists of everything that appears between the left and right

curly brackets; here, it contains only a single call to panel.dotplot. The two arguments

that must be supplied to panel.dotplot are x and y. They represent the variables to

be plotted on the horizontal and vertical axes of the dot plot, respectively. Unless directed

elsewhere, the panel function will take these from the formula specified in the general display

function (i.e., the names prestige and occup2 would be substituted for x and y in this case).

All remaining parameters in the panel function are optional. When used, they modify the

default display characteristics of the plotted points and the reference lines.

It is not really necessary to use the panel function when the defaults of the dotplot

function (i.e., round, filled, plotting symbols and reference lines that extend across the entire

range of the horizontal axis) are acceptable. But, explicit use of the panel function enables

the user to make extensive modifications to the contents of the plotting region. In fact,

we would usually bypass the panel.dotplot function entirely, since it just calls two further

panel functions: panel.xyplot to control the plotting symbols and panel.abline to control
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the reference lines. Thus, the following is still another alternative version of the preceding

example:

> dotplot(occup2 ~ prestige, data = occ.prest.subset,

+ aspect = 1.5,

+ xlab = "Prestige score for occupation",

+ panel = function (x, y) {

+ panel.xyplot(x, as.numeric(y),

+ cex = 1.25,

+ col = "black",

+ lty = 2)

+ panel.abline(h = as.numeric(y),

+ col = "gray",

+ lty = 2)})

Here, “as numeric(y)” appears as as an argument to both functions panel.xyplot and

panel.abline. This specification coerces the vertical-axis variable into a numeric vector;

the result is the ordering of the factor’s levels. This enables panel.xyplot to treat the graph

as a simple scatterplot. And, in panel.abline, the “h = as.numeric(y)” instruction places

a horizontal line at each distinct location along the vertical axis. The remaining arguments

in the panel functions should be self-explanatory.

The preceding example may seem like a lot of work to accomplish an objective that could

have been produced much more easily (i.e., without explicitly calling any panel functions at

all). However, the example does illustrate the point made earlier, that R regards a dot plot

as a scatterplot (enhanced by reference lines) between a factor and a variable. To see why

this mode of thinking is useful, let us assume that we want to produce a dot plot of the same

data, but with the reference lines omitted. This can be accomplished very easily by omitting

panel.abline from the previous panel function:

> dotplot(occup2 ~ prestige, data = occ.prest.subset,

+ aspect = 1.5,

+ xlab = "Prestige score for occupation",

+ panel = function (x, y) {

+ panel.xyplot(x, as.numeric(y),

+ cex = 1.25,
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+ col = "black",

+ lty = 2)})

Figure 12 shows the result. In effect, the dot plot is now just a scatterplot of the data. So,

why not use the xyplot function to produce it, rather than following this seemingly indirect

route of using dotplot? The reason is that dotplot automatically handles the details of

labeling the vertical axis; it would require a bit more work to do this in xyplot.

Next, suppose that we want the reference lines in the dotplot to run only from the left

side of the display to the plotted points, themselves.10 This requires adding another panel

function, panel.segments, to the previous example:

> dotplot(occup2 ~ prestige, data = occ.prest.subset,

+ aspect = 1.5,

+ xlab = "Prestige score for occupation",

+ xlim = c(0, 100),

+ panel = function (x, y) {

+ panel.segments(rep(0, length(x)), as.numeric(y),

+ x, as.numeric(y),

+ col = "gray",

+ lty = 2)

+ panel.xyplot(x, y,

+ cex = 1.25,

+ col = "black",

+ lty = 2)})

Figure 13 shows the result of this function call. The first two arguments to panel.segments

are vectors containing the horizontal and vertical coordinates of the starting positions for

the line segments. The third and fourth arguments are vectors containing the coordinates of

the terminal points for the line segments. The rep function creates a vector of zeroes. The

size of this vector is equal to the number of values being plotted (i.e., “length(x)”). So,

this vector contains the horizontal coordinate for the starting point of each observation’s line

segment (i.e., they all begin at zero). The horizontal coordinate of the terminal point for

each observation is simply the value of the variable being plotted (i.e., x in panel.segments).

And, as before, the vertical coordinates for the points are supplied by “as.numeric(y)”.
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Finally, the xlim argument (for “x limits”) operates in an obvious way to set the minimum

and maximum values on the horizontal axis to zero and one hundred, respectively.

Creating Dot Plots for Comparisons

In the previous section, we examined several variants of a basic dot plot for displaying

a set of data values. Let us next consider several dot plots for making comparisons of data

subsets. Note that for these examples, I will not introduce any new datasets. Instead, I will

list and explain the R functions that were used to produce some of the dot plots shown in

the earlier sections of this article.

We will begin with a fairly easy example. Recall that Figure 3 showed a dot plot of state

education expenditures in 1990 and 2000. That plot was generated by the following function

call:

> dotplot(state ~ educ.1990, data = educ.spending,

+ aspect = 1.5,

+ xlim = c(600, 2600),

+ xlab = list("State education spending ($1000s per capita)",

+ cex = .75),

+ panel = function (x, y) {

+ panel.abline(h = as.numeric(y), lty = 2, col = "gray")

+ panel.xyplot(x, y, pch = 16, col = "black", cex = .75)

+ panel.xyplot(educ.spending$educ.2000,

+ y, pch = 4, col = "black", cex = .6)},

+ key = list(text = list(c("1990", "2000"), cex = .75),

+ points = list(pch = c(16, 4), col = "black", cex = .75),

+ space = "top", border = T),

+ scales = list(y = list(cex = .6)) )

The data for this plot are contained in a data frame called educ.spending. It contains three

variables: state (a factor, with levels ordered by 1990 education expenditures), educ.1990,

and educ.2000. Of course, the latter two variables contain each state’s expenditure values

for the two years.11 There are five features of primary interest in this call to dotplot. First,

the label for the horizontal axis is now specified as a list. The first element in the list is the

label, itself (i.e., the text that appears between the double-quotes). The second element uses
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the cex argument (for “character expansion”) to make the font three-fourths of the default

size; this is entirely optional and is done here for aesthetic purposes only.

Second, there are several functions used together within the panel function. The first

(panel.abline) creates dashed gray lines at each state’s position on the vertical axis. The

second function (panel.xyplot) plots the variables specified in the general display func-

tion. The pch argument sets the plotting character (to a solid circle, in this case) and cex

makes the plotted symbols sixty percent of their default size. The third function (another

panel.xyplot) plots points using the 2000 spending values as horizontal coordinates; once

again the vertical axis coordinates are passed along from the general display function. Here,

the pch argument specifies that the points should be plotted as x’s. Thus, the dot plot is

effectively two distinct scatterplots located within a common plotting region.12

Note that panel.abline should appear before the two calls to panel.xyplot. The panel

function in a trellis graph always adds elements to the display sequentially, in the order they

are mentioned in the function call (this is called the “painter’s model” for constructing

graphs). Generating the lines first guarantees that the data points will be drawn over them;

a reverse ordering of the functions (i.e. panel.xyplot appearing before panel.abline)

would cause the data points to be overwritten and partially hidden by the lines.

The third interesting feature of this function call is the specification of a separate key to

explain the plotting symbols. The key argument provides a list to the dotplot function. The

first two elements in this list (i.e., text and points) are, themselves, two-element vectors

giving the plotting symbols and their identifying labels (they are each made three-fourths

of the default size for aesthetic reasons). The third element in the list, the space argument,

directs dotplot to place the key above the graphical display; Other possible specifications

for this argument are bottom, left, and right; each of these would have the obvious effect

on the placement of the key. The last element in the list, ”border = T” is a logical condition,

telling dotplot to print a border around the key (the default is to omit the border).
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Fourth, the scales argument is used here to reduce the size of the labels printed along

the vertical axis. This dot plot includes a fairly large number of labels (n = 50). If left at

their default size, the state names would overlap and it would be very difficult to decode the

information they provide. So, this specification is not merely for aesthetic purposes. Instead,

it actually facilitates accurate perception of the information provided in the graphical display.

The fifth interesting feature in this example involves the order in which the arguments

appear within the call to dotplot. The formula (i.e., “state ~ educ.1990”) must be the

first argument to the function. Following that, the first few optional arguments (i.e., data,

aspect, xlim, and xlab) are part of the general display function. These are followed by

the panel function which, itself, is followed by two more arguments for the general display

function (i.e., key and scales). Now, the exterior parts of the display must be set up before

the data are plotted (e.g., the size of the plotting region cannot be determined until dotplot

sets aside space for axes, labels, and the key). So, this particular ordering of the parameters

may seem to violate the painter’s model described earlier (i.e., the panel function defining

the plotting region appears before the general display function is completed). However, it

works because R evaluates parameters separately in the general display function and the

panel function. Specifically, the former is carried out completely before the panel function

is started (analogous to the painter, who must set up a canvas and a palette of colors before

starting on the content of a painting), regardless where the parameters appear in the call to

dotplot; but, within each of the separate general display and panel functions, parameters

are still evaluated sequentially.

Moving on to a more complex type of comparison plot, recall that Figure 5 showed

1992 state policy priority scores separately by region. Creating such divided plots using the

dotplot function is a bit tricky and it involves as much work in preparing the dataset as it

does in specifying the function.13 Let us begin by creating a slightly different-- and slightly

easier-- version of the dot plot from Figure 3. Assume that the data are contained in four

separate data frames called northeast, midwest, south, and west, respectively. Each data
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frame has a single variable called policy. The two-letter USPS state name abbreviations are

used as row names in each of the data frames and the observations are sorted by the values

of policy within each data frame.

The first step is to create a single “divided” dataset in which the states from each region

are grouped together and each region’s observations are separated by a “dummy” observation

containing the region name and a nonsense value for priority. This can be accomplished as

follows:

> label1 <- as.data.frame(-9)

> colnames(label1) <- "policy"

> rownames(label1) <- "Northeast: "

> label2 <- as.data.frame(-9)

> colnames(label2) <- "policy"

> rownames(label2) <- "Midwest: "

> label3 <- as.data.frame(-9)

> colnames(label3) <- "policy"

> rownames(label3) <- "South: "

> label4 <- as.data.frame(-9)

> colnames(label4) <- "policy"

> rownames(label4) <- "West: "

> new.data <- as.data.frame(rbind(northeast, label1,

+ midwest, label2, south, label3, west, label4))

Notice the strategy used in the preceding statements: For each region, a new data frame

(called label1, label2, and so on) is created with a single observation and a single variable.

The variable is called policy (just as in the data frames containing the real data), but the

value is set to a nonsensical -9.14 The row name in the new data frame gives the region

name, followed by a colon and three blank spaces. These extra spaces will be used to offset

the region labels from the state abbreviations in the vertical axis labels of the graph. Finally,

the rbind function (i.e., “row bind”) is used to “stack” the respective data frames so that

each region label appears below the “real” data for that region; this creates a matrix which

is, in turn, coerced to a data frame (using the as.data.frame function).
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Next, we need to create an ordered factor from the row names in new.data. The levels of

this factor will be arranged according to the order in which the observations occur in new.data

(recall that the observations are already sorted by policy values within each region):

> new.data$state <- as.factor(row.names(new.data))

> new.data$sequence <- seq(1, length(new.data$policy))

> new.data$state <- reorder(new.data$state, new.data$sequence)

This new ordered factor is employed as the vertical axis variable in the dot plot, as follows:

> dotplot(state ~ policy, data = new.data,

+ aspect = 1.5,

+ xlab = "State policy priority scores, 1992",

+ xlim = c(.49, .55),

+ scales = list(y = list(cex = .6)),

+ panel = function (x, y) {

+ panel.dotplot(x[x > 0], y[x > 0],

+ pch = 16, col = "black", lty = 2)} )

The graph that results is shown in Figure 14. Most elements of the preceding function

should be familiar to the reader. The only new technique is the use of logical conditions

within the square brackets following the x and y variables specified in panel.dotplot. The

panel function will only carry out the plotting tasks for those observations where the condi-

tion is true. Since the region labels were given values of -9 on the policy variable (i.e., x in

panel.dotplot), the condition is false for those observations. Therefore, no horizontal lines

or data points are plotted in those cases. Note that “pch=16” specifies filled circles as the

plotting symbols.

The panel function only affects the interior of the plotting region. Therefore, all 52 levels

of the factor, state (i.e., the 48 state names plus the four region names), still appear along the

vertical axis (which is, of course, outside the plotting region). In this case, it is important to

specify the xlim argument so that it just contains the legitimate values of the policy variable.

Otherwise, the general display function for dotplot would regard the nonsense value, -9, as

the minimum value of policy for purposes of constructing the horizontal axis.
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The dot plot shown back in Figure 5 shows the same information as Figure 14. The only

difference is somewhat “cosmetic” in that the region labels are displayed within the plotting

region, rather than the left margin of the vertical axis. To reproduce this, we will need

to replace the region labels with blank spaces on the vertical axis and explicitly insert the

region names into the plotting region. Again, this is a bit tricky because of the way that R

handles row names (every row name in a data frame must be unique, so multiple occurrences

of blanks for row names will not work) and factor levels (dotplot graphs data values against

unique levels of a factor so, once again, multiple blank spaces will not work because they

would be regarded as a single level of the factor). What we will do is employ the same

data frame from the previous example, but create indicator vectors to determine where data

points and region names should be plotted within the plotting region. In addition, we will

explicitly supply a new vector of values for the vertical axis labels and a vector containing

the four region labels:

> has.values <- which(new.data$policy != -9)

> no.values <- which(new.data$policy == -9)

> state2 <- as.vector(new.data$state)

> state2[no.values] <- " "

> region.labels <- c("Northeast:", "Midwest:", "South:", "West:")

In the first two statements, the which function creates two vectors giving the location indices

of the observations where policy is equal to -9 and not equal to -9, respectively. The third

statement creates a new vector, state2, with values identical to the state variable in data

frame new.data. The fourth statement uses the newly-created no.values vector to set four

of the entries in state2 to blank spaces. Finally, the last statement simply creates a vector

of region labels. The preceding statements are followed by the following call to dotplot, in

order to produce that graph that was shown in Figure 5:

> dotplot(state ~ policy, data = new.data,

+ aspect = 1.5,

+ xlim = c(.49, .55),

+ scales = list(y = list(cex = .6,
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+ labels = state2)),

+ xlab = list("State policy priorities, 1992", cex = .75),

+ panel = function (x, y) {

+ panel.dotplot(x[has.values], y[has.values],

+ col = "black", lty = 2)

+ panel.text(rep(.502, 4), y[no.values],

+ labels = region.labels, cex = .6, adj = 1)} )

Now, the preceding dotplot call uses the factor state from the new.data data frame to

construct the dot plot. But, the “labels = state2” entry in the list supplied to the scales

argument explicitly substitutes the entries of that vector for the levels of the state factor in

the vertical axis labels. This is how we get the blanks in the rows where the region names

were found in Figure 14.

In the call to panel.dotplot, the index vector, has.values, is used as a logical condition

on the x and y variables to determine where reference lines are drawn and points are plotted

in the plotting region of the display. The call to panel.text plots the region labels. The

first argument in this function is a vector of four elements, all equal to 0.502; these are

the horizontal coordinates for the region labels. The vertical coordinates are the four levels

of the state factor indexed by the no.values vector. At these locations, the four entries in

the region.labels vector are plotted. The adj argument is a number between zero and one,

inclusive, that specifies the proportion of the label that should appear to the left of the

plotting location. Setting “adj=1” is equivalent to right-justifying the labels.

Dot Plots and Statistical Summaries

As shown earlier, dot plots can be very useful for presenting the results of statistical

analyses. For example, Figure 6 showed the percentage difference in Bush and Kerry votes

across the party identification categories. Assume that these data are contained in a data

frame called party.vote. This data frame is taken from a crosstabulation.15 It consists of

seven rows (corresponding to the seven categories of the party identification index, given in

order from “strong Democrat” to “strong Republican”) and three columns (containing the

24



partisan labels, the Bush vote, and the Kerry vote, respectively). The columns of the data

frame are named partyid, bush, and kerry, respectively. The following R statements would

reproduce Figure 6:

> party.vote$partyid <- reorder(party.vote$partyid, seq(1:7))

> dotplot(partyid ~ (bush - kerry), data = party.vote,

+ aspect = 1.5,

+ xlab = list("Percent voting for Bush minus percent voting for Kerry",

+ cex = .75),

+ panel = function (x, y) {

+ panel.xyplot(x, y, pch = 16, cex = 1.25, col = "black")

+ panel.abline(v = 0, lty = 2, col = "gray")} )

The first statement is used to fix the order of the party identification categories, and prevent

them from being listed in alphabetical order in the dot plot. Note that the call to dotplot

specifies that the difference between two variables is to be plotted. This eliminates the need

to create a new variable for this purpose. In the panel function, we use panel.xyplot rather

than panel.dotplot in order to eliminate the horizontal reference lines. The pch and cex

arguments specify solid circles for the plotting symbols, one and one-fourth times the default

size. And, the argument “v = 0” in panel.abline places a vertical, dashed, gray line at

the zero point on the horizontal axis.

R makes it very easy to pass information from a statistical analysis over to a graphing

function, with a minimum of manual copying or cutting-and-pasting. For example, Figure

7 showed a dot plot of ten sample means with error bars representing confidence intervals.

Assume that the data used to calculate these means are contained in a data frame, im-

port.2004, with 1212 rows (i.e., the sample size for the 2004 NES) and ten columns (one for

each of the importance ratings). The graphing task is complicated a bit by the presence

of missing values (coded as NA’s) within the data. Descriptive labels for the ten variables

in import.2004 are contained in the separate vector, var.labels. The means and confidence

intervals for the dot plot are created with the following statements:
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> sample.means <- mean(import.2004, na.rm = T)

> std.devs <- sd(import.2004, na.rm = T)

> where.nonmissing <- !(apply(import.2004, c(1, 2), is.na))

> sample.ns <- apply(where.nonmissing, 2, sum)

> std.errs <- std.devs / (sample.ns ^ .5)

> lower <- sample.means + (std.errs * qt(.025, (sample.ns - 1)))

> upper <- sample.means + (std.errs * qt(.975, (sample.ns - 1)))

> new.data <- data.frame(var.labels, sample.means, lower, upper)

> new.data$var.labels <- reorder(new.data$var.labels,

+ new.data$sample.means)

The first two statements use R’s statistical functions to calculate the column means and

standard deviations from data frame import.2004 ; in each case, the result is a ten-element

vector. The next two statements determine the number of nonmissing observations within

each column. The logical matrix, where.nonmissing, is the same size as import.2004 It has

value TRUE in the cells that correspond to nonmissing data in import.2004, and FALSE in

the cells that correspond to missing data. The ten-element sample.ns vector is then created

by summing within columns of where.nonmissing (note that TRUE evaluates to one and

FALSE to zero in the sum function). The std.errs vector contains the standard errors of the

sample means, created by dividing the elements of the std.devs vector by the square roots of

the elements in the sample.ns vector. The lower and upper bounds of the confidence intervals

for the respective means are obtained by adding the product of the standard errors and the

appropriate t values (obtained using the qt function) to the means. Next, the data.frame

function concatenates the vectors of variable labels, sample means, and the limits of the

confidence intervals as columns of a new data frame, called new.data. Finally, the levels of

the factor var.labels are ordered according to the sample means, using the reorder function.

The display in Figure 7 would be reproduced by the following call to dotplot:

> dotplot(var.label ~ sample.means, data = new.data,

+ aspect = 1.5,

+ xlim = c(3.3, 4.3),

+ xlab = "Mean importance rating",

+ panel = function (x, y) {

+ panel.xyplot(x, y, pch = 16, col = "black")
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+ panel.segments(new.data$lower, as.numeric(y),

+ new.data$upper, as.numeric(y), lty = 1, col = "black")} )

Once again, we use panel.xyplot rather than panel.dotplot in order to eliminate the

horizontal reference lines. The panel.segments function draws the error bars using the

variables lower and upper as the horizontal coordinates for the ends of the line segments.

Note that the fully-qualified variable names must be specified, since the general display

function does not pass the name of the data frame from the data argument to the panel

function.

It is also very straightforward to create a dot plot from the parameter estimates in a

statistical model, such as a regression equation. Recall that Figure 8 showed standardized

OLS coefficients, with different plotting symbols used to show which independent variables

have significant and nonsignificant effects. Assume that this regression model is stored in

an R object called “model1”.16 Now, the component parts of this (or any) model, and

the parts of the summary of this model (i.e., the output obtained by calling the function

summary(model1)) are both lists. Each element in an R list has a name, so we can access

any part of the model or its summary by simply using that part’s name. For example,

“summary(model1)$coefficients” would refer to the element of the summary(model1) list

named coefficients.

The coefficients list element is a matrix in which the rows correspond to the regressors

in the equation (beginning with the intercept, and following in the order that the variables

were listed in the R formula that created the model). The matrix has four columns: The first

contains the regression coefficients, the second contains the standard errors, the third holds

the t statistics for the null hypothesis that each parameter is zero, and the fourth column

contains the observed probability values for two-sided tests of that null hypothesis on each

coefficient. The variable names are used as the row names for this matrix (“(Intercept)”

is the name for the first row). Since these names are sometimes a bit cryptic, we will again
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assume that descriptive variable labels are included in a factor called var.labels. We can

create the data frame that will be used to reproduce Figure 8 with the following statements:

> coeff.info <-

+ summary(model1)$coefficients[2:model1$rank, c(1,4)]

> coeff.data <- data.frame(var.labels, coeff.info)

> colnames(coeff.data) <- c("var.label", "coeff", "prob")

> coeff.data$var.label <- reorder(coeff.data$var.label,

+ coeff.data$coeff)

The first statement creates a matrix of the coefficients and the observed probability values by

extracting rows and columns from the coefficients entry in the summary(model1) list.17 The

first row of the coefficients matrix is not used because it contains the intercept (which is zero,

by definition, with standardized coefficients). The “model1$rank” specification extracts

the rank element from the model1 list.18 This is the rank of the crossproducts matrix

for the independent variables; in the absence of perfect collinearity, this is equal to the

number of regressors. The vector “c(1, 4)” extracts the first and fourth columns from the

“coefficients” matrix. The second statement creates a new data frame by concatenating the

vector of variable labels and the newly-created matrix of coefficients and probabilities. The

third statement sets the column names in this data frame (the names picked up from the

model summary are longer and a bit clumsy to use), and the fourth statement reorders the

levels of the factor containing the variable labels so that they correspond to the sizes of the

coefficients. Figure 8 then could be reproduced by the following call to dotplot:

> dotplot(var.label ~ coeff, data = coeff.data,

+ aspect = 1.5,

+ xlab = list("Standardized regression coefficient",

+ cex = .75),

+ scales = list(cex = .75),

+ panel = function(x, y) {

+ panel.xyplot(x[coeff.data$prob < .05],

+ y[coeff.data$prob < .05],

+ cex = 1.25, pch = 16, col = "black")

+ panel.xyplot(x[coeff.data$prob >= .05],

+ y[coeff.data$prob >= .05],
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+ cex = 1.25, pch = 1, col = "black")

+ panel.abline(v = 0, lty = 2, col = "gray") },

+ key = list(text = list(c(" Significant, 0.05 level:",

+ "Not significant, 0.05 level:"), cex = .75),

+ points = list(pch = c(16, 1), col = "black", cex = .75),

+ space = "top", border = T) )

This function combines a number of the techniques introduced earlier; while they are per-

haps used a bit differently, there is really nothing new here. First, we specify the formula,

the dataset, the aspect ratio, the horizontal axis label, and the reduced size for the axis

tick labels. The panel function contains two different calls to panel.xyplot (again, we

use these to eliminate the horizontal reference lines that panel.dotplot would create). In

each one, logical conditions are used to specify different plotting symbols for significant

(i.e., “coeff.data$prob < .05”) and nonsignificant (i.e., “coeff.data$prob >= .05”) co-

efficients. The panel.abline function creates the vertical reference line and, finally, a key

for the plotting symbols is placed at the top of the display.

Further Resources

Hopefully, the examples presented above will help readers use the R statistical computing

environment in order to generate not only basic dot plots, but also more complex versions

of this graphical display. I have tried to supplement the listings of R statements with more

general insights regarding the nature and operation of trellis graphics functions. I hope that

this information will enable researchers to create dot plots that are appropriate for their own

particular needs and data analysis contexts. At the same time, many of the programming

“tricks” discussed above should also prove useful for modifying the default parameters in the

R functions that create other kinds of graphical displays (e.g., the xyplot function to create

scatterplots in the lattice package).

As with any set of specific examples, those provided in this article only scratch the surface

of a potentially vast subject. For this reason, further documentation about the graphical

tools available in R is generally very desirable. The most convenient source of information
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is the R online help system. However, many users find the help files for lattice functions

to be a bit terse. As a more user-friendly alternative, the S-Plus Trellis Graphics User’s

Manual is an excellent guide to the entire trellis system and its general usage. Another

extremely helpful source of information is “A Tour of Trellis Graphics,” by Richard A.

Becker, William S. Cleveland, Ming-Jen Shyu, and Stephen P. Kaluzny. This paper expands

upon the basic information provided in the User’s Manual and provides detailed examples

illustrating how to create and modify trellis graphs. While these documents were written

for the commercially-available S-Plus system, virtually all of their content applies directly

to the lattice package in R, as well. Both are available on the Trellis Display web site:

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/

I have also included copies of these two documents on my own web site. Still another source

of information is the book, R Graphics, by Paul Murrell. This is a general reference work

which provides comprehensive and readily-accessible treatment of both the traditional and

the grid (which contains the lattice package) graphics systems in R. Finally, John Fox’s

book, An R and S-Plus Companion to Applied Regression, provides an enormous amount of

information and advice about working with the statistical and graphics functions in R. I rely

on all of these sources in my own work, and I recommend them very highly.

CONCLUSIONS

In conclusion, dot plots are excellent graphical displays for labeled quantitative data values.

They contain a great deal of information, are easy to interpret, and overcome a number of the

problems associated with other kinds of displays. Dot plots are also extremely flexible; they

can be modified in various ways to handle many different data analysis situations. They are

useful both for analytic purposes (to paraphrase Tukey, they show the researcher features

that he/she never expected to see) and for presentational displays (i.e., they guide the

observer see the researcher’s conceptions of the most important features in the data). While

a number of software packages contain routines for producing dot plots, the R statistical
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computing environment is unparalleled in its ability to modify and adapt this graphical

display to a wide variety of research contexts. For all of these reasons, dot plots (along with

the requisite programming knowledge to create them) constitute a very useful addition to

the methodologist’s ”toolbox.”
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NOTES

1. Dot plots are sometimes called “index plots” (e.g., Fox 2002).

2. Of course, this structure could be reversed, by placing the labels on the horizontal axis and
the quantitative values on the vertical axis. Fox (2002) presents several examples showing
this kind of dot plot (pages 30, 196, 198). Nevertheless, categorical labels are usually easier
to read when they are placed along the vertical axis. And, it is usually possible to include a
larger number of labels than would be the case on the horizontal axis.

3. Open, rather than solid, circles are used as the plotting symbol for the 1990 expenditures
because the 1990 and 2000 values for Maine are almost identical. Therefore, they overlap in
the dot plot and a solid plotting symbol would hide the “x”.

4. The examples in this article were produced using R 2.3.0. With earlier versions of R, some
modifications would be necessary in order to make the examples work properly.

5. All of the datasets used in the examples are available on my website, along with detailed R
scripts to reproduce all of the figures from this article. The web site also includes alterna-
tive versions of many graphs and a number of additional dot plot examples. The URL is
http://polisci.msu.edu/jacoby/.

6. The contents of the formula could be reversed (i.e., with “x” placed before the tilde and “y”
afterward) to produce a dot plot with labels on the horizontal axis and variable values on
the vertical axis. However, several other modifications to the dotplot call usually would be
necessary in order to produce legible labels. An example of such a “horizontal” dot plot is
given on my website.

7. Strictly speaking, the reorder function sorts the factor’s levels by the values of a function
applied to X, within unique levels of factor. The default function in reorder is the sample
mean.

8. We could use the attach function to add occ.prest.subset to R’s search path. This might
save a bit of typing. However, we would still have to add any new variables or modified
versions of existing variables to the data frame. So, fully-qualified names would still need to
be used in such cases.

9. Figuring out the various arguments, defaults, and optional parameters for R graphics can
be an extremely frustrating experience. But, there are a few ways to get some help with
this process. The show.settings() function displays the plotting characteristics (e.g., line
styles, plotting symbols, colors, etc.) that are currently in effect for trellis displays. Issuing
the statement “trellis.par.get()” will return a comprehensive list of default values for
the parameters used to create trellis displays. The function trellis.par.set can be used



to modify specific parameters. Fox (2002, pages 239-242) shows how to create some very
handy graphs for keeping track of plotting symbols and line types.

10. As explained earlier this line style is only appropriate for ratio-level data, where magnitude
comparisons are appropriate. But, the occupational prestige scores are actually ratio-level
values, even if they are not usually interpreted as such: In fact, the scores are the percentages
of survey respondents that rated each occupation as “good” or “excellent” on a five-point
scale. So, it should be reasonable to extend the lines from the zero point to the data values
in this example.

11. Figure 5 could be reproduced by reordering the levels of state according to the values of
educ.2000, and then issuing exactly the same call to dotplot.

12. Although I prefer to use the panel functions as shown here, an alternative approach would be
to use the groups argument in the dotplot call. Doing so would produce identical results.
One possible advantage of this approach is that the simpleKey function can be used as a
slightly easier way to create a key for the graph. See my web site for an example, Becker et al.
(1996) for more details on the groups argument, and the lattice help files for simpleKey
for more information on that function.

13. Divided dot plots may comprise one situation where it is easier to use the dotchart function
from the traditional R graphics system in order to obtain the desired results. I provide an
example on my website and the help file for dotchart gives more details.

14. Of course, there is nothing special about -9. Any other value could have been used, as long
as it would not be mistaken for a legitimate data value. We also could have assigned the R
missing value, NA. But comparisons involving missing values are a bit tricky in R, so I find
it easier to avoid any complications by simply specifying a numeric, but nonsensical, value
in situations that involve logical comparisons.

15. The contents of a crosstabulation can be used directly as input to the dotplot function. My
website provides an example, and also shows how Figure 6 could be constructed using this
approach. More details are also provided in the R help file for dotplot.table.

16. In this case, the standardized coefficients were obtained by standardizing the data (using
R’s scale function) before estimating the model.

17. Of course, it is not really appropriate to use inferential procedures with standardized co-
efficients. But, the probability values are identical to those that are obtained from the
nonstandardized coefficients, so no harm is done.

18. The same rank object is also an element in the summary(model1) list. While that list could
have been used here, the reference to model1 reduces the line length a bit.
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Table 1: Prestige Scores for 15 Occupations.

Occupation Prestige Score
Accountant 82

Author 76
Professor 93

Civil Engineer 88
Physician 97

RR Conductor 38
Store Manager 45

Mail Carrier 34
Carpenter 33
Machinist 57

Gas Station Attendant 10
Taxi Driver 10

Barber 20
Cook 16

Janitor 8

Data Source: Duncan (1961).



Figure 1: Dot Plot of 1992 State Policy Priority Scores.
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Figure 2: Dot Plot of State Education Spending, 2000 (in dollars per capita).
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Figure 3: Dot Plot of State Education Spending, 1990 and 2000 (in inflation-adjusted dollars
per capita).
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Figure 4: Dot Plot of State Education Spending, 1990 and 2000 (in inflation-adjusted dollars
per capita), Sorted by 2000 Expenditures.
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Figure 5: Dot Plot of 1992 State Policy Priority Scores, by Region.
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Figure 6: Dot Plot of Net 2004 Presidential Vote, by Party Identification
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Figure 7: Dot Plot of Mean Issue Importance Ratings, 2004 CPS National Election Study.
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Figure 8: Dot Plot of Standardized Regression Coefficients from Model Predicting Attitudes
Toward Government Spending
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Figure 9A: Bar Chart of Mean Issue Importance Ratings, 2004 CPS National Election
Study.
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Figure 9B: Bar Chart of Mean Issue Importance Ratings, 2004 CPS National Election Study
(Alternate Version).
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Figure 10: Dot Plot of Prestige Scores for 15 Occupations.
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Figure 11: Dot Plot of Prestige Scores for 15 Occupations, with Points Sorted by Data
Values.
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Figure 12: Dot Plot of Prestige Scores for 15 Occupations, with Reference Lines Omitted.
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Figure 13: Dot Plot of Prestige Scores for 15 Occupations, with Reference Lines
Proportional to Data Values.
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Figure 14: Dot Plot of 1992 State Policy Priority Scores, by Region (Alternate Version).
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