
1

Profiling and Debugging OpenCL™

Applications with ARM® Development Tools

October 2014

2

Agenda

1. Introduction to GPU Compute

2. ARM® Development Solutions

3. Mali™ GPU Architecture

4. Using ARM DS-5 Streamline with

OpenCL

5. Optimization tips

3

What is GPU Compute?

Cost-effective, efficient, and

high-performance parallel

computation

- 2D/3D Graphics

- Image processing

- Multimedia

- Physics

OS and applications

The GPU is now programmable through

C-like languages

Computational

accelerator or as a

companion processor

4

The Evolution of Mobile GPU Compute

Mali-55

Mali-200

Mali-300

Mali-400 MP

Mali-T600
Series

Mali-T700

Series

2007 2009 2010 2012 2013

OpenGL ES 1.1
Fixed pipeline

OpenGL ES 2.0
Programmable pipeline

OpenCL Full Profile/RenderScript
Portable Heterogeneous Parallel Computation

OpenGL ES 3.1 Compute Shaders
GPU Compute within graphics pipeline

5

GPU Compute: Improve Existing and Enable New Solutions

• Complement CPU processing

• Enable choice of best processor for the job

Increased system-level
energy efficiency

• Use heterogeneous compute APIs designed for concurrency
Better load-balance across

system resources

• Offload non-graphical computational tasks to GPU Free up CPU resource

• Software solution leveraging CPU+GPU subsystem

• Industry standard portable APIs

Flexibility, portability and
programmability

• Remove computational barrier to improve visual quality,
responsiveness, accuracy within existing compute & energy budgets Improve user experience

• Enable new applications using existing silicon design Reduce cost, risk and TTM

6

ARM® Development Solutions

7

 To help developers create innovative, robust and energy efficient ARM-based products

ARM Development Solutions Mission

big.LITTLE™

AArch64 Internet

of things

Network

interconnect

Multi-

cluster

Tools for IP development

and deployment

Facilitating software

development on ARM

Strengthening the ARM

tools ecosystem

GPU

compute

Juno

platform Safety

standards

From sensors

to servers.

8

DS-5: Tools from Sensors to Servers

Everything ARM

Support for all ARM processor cores

Early support for new IP

End-to-End Solution

All tools you need,

 from code generation to optimization

ARM Expertise

Co-developed with ARM processors

Expert technical support

Track Record

Billions of products have shipped

over 20+ years based on ARM tools

9

DS-5 Key Components

DS-5 IDE

• Powerful, customized editor based on industry standard Eclipse IDE 4.3

• Hundreds of compatible plugins

Streamline Analyzer

• CPU, GPU, interconnect performance and power analysis

• Time- and event-based profiling

DS-5 Debugger

• Comprehensive device bring-up tools and s/w debugger for single- and multi-core platforms

• OS aware debug, on silicon, virtual platform and emulator

Compilation Tools

• ARM Compiler 5 and 6 C/C++ toolchains for bare-metal and RTOS

• Integrated Linaro GCC for ARM Linux

10

 H/W and S/W performance data

 Task/thread execution sequence tracing

 Process-to-source CPU and event profiling

 Multicore utilization mapping

 Customizable data sources

 For Linux and Android

 OpenGL® ES and OpenCL ® analysis on Mali GPU

 No debug or trace probe required

 Streaming data option for long captures

 For embedded

 Negligible overhead, based on DWT and ITM

 Compatible with Cortex-M3 and Cortex-M4

Streamline Analyzer
Debug and optimize system performance and power

11

Timeline: Heat Map
Identify hotspots and system bottlenecks at a glance

Select from CPU/GPU counters

OS level and custom data sources

Accumulate counters, measure time

 and find instant hotspots

Select one or more tasks to

isolate their contribution

Combined task switching trace and

 sample-based profile

12

Mali GPU Analysis

OpenCL Compute OpenGL ES

13

A Practical Example:

Optimizing an ADAS Application

14

ADAS Case Study

 Traffic Lane Detection Algorithm

 Chain of filters running on the GPU

 Analyzed using ARM DS-5 Streamline

 Significant gaps in GPU activity easily identified

 Trace images sent back to developer

 Updated Version from Developer

 Better pipelining between CPU & GPU

 2 x performance improvement overall

15

Barriers, Local Atomics,

Cached Local Memory

Registers, PC, SP, Private Stack

Global Atomics,

Cached Global Memory

Work Item

Work Group

ND Range

OpenCL Execution Model on Mali GPUs

16

 SIMD: Several components

per operation

 128-bit registers

 VLIW: Several operations per

instruction word

 Some operations are “free”

 Built in function library

 Accelerated in hardware

Inside a Mali GPU Core

Shader

Core

17

Hardware Counters

 Counters per core
 Active cycles

 Pipe activity

 L1 cache

 Counters per core group
 L2 caches

 MMU

 Counters for the GPU
 Active cycles

 Accessed through Streamline
 Timeline of all hardware counters, and more

 Explore the execution of the full application

 Zoom in on details

18

Streamline

19

Streamline

20

Lane and Car Detection

21

Streamline

22

Streamline: OpenCL Timeline

23

Streamline: OpenCL Timeline

24

Streamline: OpenCL Timeline

25

Optimizing Memory Traffic

 Only one programmer-controlled memory
 Many transparent caches

 Memory copying takes time
 It can easily dominate over kernel execution time

 Use appropriate memory allocation schemes

 Avoid synchronization points
 Cache maintenance has a cost as well

 Streamline to the rescue
 Visualize when kernels are executed

 Many more features

26

Hiding Pipeline Latency

 Needs enough threads
 Limited by register usage

 When there are issues
 Few instructions issued per cycle

 Spilling of values to memory

 Symptoms
 Low Max Local Workgroup Size in OpenCL™

 Few instructions issued per cycle in limiting pipe

 Remedy
 Smaller types More values per register

 Splitting kernels

27

Finding Processing Bottlenecks

 Host application or kernel execution

 Avoid memory copying

 Avoid cache flushes

 Which pipe is important?

 Operations in other pipes incur little or no runtime cost

 Saving operations or saving registers

 How much register pressure can we handle, and still hide the latencies?

 How well are we using the caches

 Are instructions spinning around the LS pipe waiting for data?

28

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any Questions?

malideveloper.arm.com

ds.arm.com

community.arm.com

