
1

Profiling and Debugging OpenCL™

Applications with ARM® Development Tools

October 2014

2

Agenda

1. Introduction to GPU Compute

2. ARM® Development Solutions

3. Mali™ GPU Architecture

4. Using ARM DS-5 Streamline with

OpenCL

5. Optimization tips

3

What is GPU Compute?

Cost-effective, efficient, and

high-performance parallel

computation

- 2D/3D Graphics

- Image processing

- Multimedia

- Physics

OS and applications

The GPU is now programmable through

C-like languages

Computational

accelerator or as a

companion processor

4

The Evolution of Mobile GPU Compute

Mali-55

Mali-200

Mali-300

Mali-400 MP

Mali-T600
Series

Mali-T700

Series

2007 2009 2010 2012 2013

OpenGL ES 1.1
Fixed pipeline

OpenGL ES 2.0
Programmable pipeline

OpenCL Full Profile/RenderScript
Portable Heterogeneous Parallel Computation

OpenGL ES 3.1 Compute Shaders
GPU Compute within graphics pipeline

5

GPU Compute: Improve Existing and Enable New Solutions

• Complement CPU processing

• Enable choice of best processor for the job

Increased system-level
energy efficiency

• Use heterogeneous compute APIs designed for concurrency
Better load-balance across

system resources

• Offload non-graphical computational tasks to GPU Free up CPU resource

• Software solution leveraging CPU+GPU subsystem

• Industry standard portable APIs

Flexibility, portability and
programmability

• Remove computational barrier to improve visual quality,
responsiveness, accuracy within existing compute & energy budgets Improve user experience

• Enable new applications using existing silicon design Reduce cost, risk and TTM

6

ARM® Development Solutions

7

 To help developers create innovative, robust and energy efficient ARM-based products

ARM Development Solutions Mission

big.LITTLE™

AArch64 Internet

of things

Network

interconnect

Multi-

cluster

Tools for IP development

and deployment

Facilitating software

development on ARM

Strengthening the ARM

tools ecosystem

GPU

compute

Juno

platform Safety

standards

From sensors

to servers.

8

DS-5: Tools from Sensors to Servers

Everything ARM

Support for all ARM processor cores

Early support for new IP

End-to-End Solution

All tools you need,

 from code generation to optimization

ARM Expertise

Co-developed with ARM processors

Expert technical support

Track Record

Billions of products have shipped

over 20+ years based on ARM tools

9

DS-5 Key Components

DS-5 IDE

• Powerful, customized editor based on industry standard Eclipse IDE 4.3

• Hundreds of compatible plugins

Streamline Analyzer

• CPU, GPU, interconnect performance and power analysis

• Time- and event-based profiling

DS-5 Debugger

• Comprehensive device bring-up tools and s/w debugger for single- and multi-core platforms

• OS aware debug, on silicon, virtual platform and emulator

Compilation Tools

• ARM Compiler 5 and 6 C/C++ toolchains for bare-metal and RTOS

• Integrated Linaro GCC for ARM Linux

10

 H/W and S/W performance data

 Task/thread execution sequence tracing

 Process-to-source CPU and event profiling

 Multicore utilization mapping

 Customizable data sources

 For Linux and Android

 OpenGL® ES and OpenCL ® analysis on Mali GPU

 No debug or trace probe required

 Streaming data option for long captures

 For embedded

 Negligible overhead, based on DWT and ITM

 Compatible with Cortex-M3 and Cortex-M4

Streamline Analyzer
Debug and optimize system performance and power

11

Timeline: Heat Map
Identify hotspots and system bottlenecks at a glance

Select from CPU/GPU counters

OS level and custom data sources

Accumulate counters, measure time

 and find instant hotspots

Select one or more tasks to

isolate their contribution

Combined task switching trace and

 sample-based profile

12

Mali GPU Analysis

OpenCL Compute OpenGL ES

13

A Practical Example:

Optimizing an ADAS Application

14

ADAS Case Study

 Traffic Lane Detection Algorithm

 Chain of filters running on the GPU

 Analyzed using ARM DS-5 Streamline

 Significant gaps in GPU activity easily identified

 Trace images sent back to developer

 Updated Version from Developer

 Better pipelining between CPU & GPU

 2 x performance improvement overall

15

Barriers, Local Atomics,

Cached Local Memory

Registers, PC, SP, Private Stack

Global Atomics,

Cached Global Memory

Work Item

Work Group

ND Range

OpenCL Execution Model on Mali GPUs

16

 SIMD: Several components

per operation

 128-bit registers

 VLIW: Several operations per

instruction word

 Some operations are “free”

 Built in function library

 Accelerated in hardware

Inside a Mali GPU Core

Shader

Core

17

Hardware Counters

 Counters per core
 Active cycles

 Pipe activity

 L1 cache

 Counters per core group
 L2 caches

 MMU

 Counters for the GPU
 Active cycles

 Accessed through Streamline
 Timeline of all hardware counters, and more

 Explore the execution of the full application

 Zoom in on details

18

Streamline

19

Streamline

20

Lane and Car Detection

21

Streamline

22

Streamline: OpenCL Timeline

23

Streamline: OpenCL Timeline

24

Streamline: OpenCL Timeline

25

Optimizing Memory Traffic

 Only one programmer-controlled memory
 Many transparent caches

 Memory copying takes time
 It can easily dominate over kernel execution time

 Use appropriate memory allocation schemes

 Avoid synchronization points
 Cache maintenance has a cost as well

 Streamline to the rescue
 Visualize when kernels are executed

 Many more features

26

Hiding Pipeline Latency

 Needs enough threads
 Limited by register usage

 When there are issues
 Few instructions issued per cycle

 Spilling of values to memory

 Symptoms
 Low Max Local Workgroup Size in OpenCL™

 Few instructions issued per cycle in limiting pipe

 Remedy
 Smaller types  More values per register

 Splitting kernels

27

Finding Processing Bottlenecks

 Host application or kernel execution

 Avoid memory copying

 Avoid cache flushes

 Which pipe is important?

 Operations in other pipes incur little or no runtime cost

 Saving operations or saving registers

 How much register pressure can we handle, and still hide the latencies?

 How well are we using the caches

 Are instructions spinning around the LS pipe waiting for data?

28

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any Questions?

malideveloper.arm.com

ds.arm.com

community.arm.com

