
Writing User Stories

Product owners …

 … always have unlimited desires but limited
resources

 … have requirements, which necessitate
communication with those who can provide
the solution to said requirement.

Negotiation over Contracts

 “Since users [product owners] don’t know how to
solve their problems, we need to stop asking … and
to involve them instead” - Mike Cohn

 Involving a product owner in the refinement of
their requirements via User Stories saves:

o Time: would you rather write a novella of
requirements or simply an outline?

o Money: Legal fees in contract review; contractual
change orders

A Story template

“As a <User or role>
I want <Business Functionality>
So that <Business Justification>”

Example:

As a Account Holder,
I want to be able to withdraw funds from my checking account,
So that I can buy some bling.

Stories are not

 “mini” Use Cases

 a complete specification

 a contract

 intended to be interpreted without a
Product Owner

What is an Epic?

 Are usually compound Stories, that can be
broken down into several smaller, more
focused stories

 May encompass enough work for several
Sprints (iterations)

User Stories guidelines

 Testable. Tangible acceptance tests can be written
against any delivered software

 The scope of the User Story is manage-able enough
for the team to provide an Estimate

 Independent and do not rely on other Stories

 Sized appropriately. Have a level of effort which the
team can comfortably achieve in the duration of a
single iteration

Some places to consider breaking Epics

 At C.R.U.D boundaries

 At system boundaries where two systems
interface

 At Happy-Path / Exception-Path boundaries

At CRUD boundaries

 This solution is commonly used in environments that
interact with a database

 Example:
As an account holder, I want to be open a checking account …

As an account holder, I want to deposit a check into my
checking account …

As an account holder, I want to view the updated balance in my
checking account …

At system boundaries

 This solution is commonly used in environments
where there are a large number of legacy systems

 And can be used:
o When there is a clear separation between two systems
o Where the interface between the two systems is well

understood

 Beware of creating dependencies between two
different projects

At Happy-Path / Exception-Path boundaries:

 Commonly used when transitioning from Use
Cases

 The happy-path scenario may still need to be
decomposed

 Breaking down Use Cases can be a lot of
work … it may be simpler to just start using
User Stories

What are Acceptance Criteria?

 Product Owner expectations on what will be delivered

 Acceptance Criteria can include:
o Functionality that the system will perform
o Interface look and feel
o Necessary documentation (eg. SOX compliance

documentation)

Guidelines: Acceptance Criteria

 Be explicit
o “The system will display the date.” …
o In what format? Is “2006, April 1st” acceptable?

 Provide examples for clarity
o “The system date will be displayed in the format 1/4/06”

 List any assumptions that the team may not be fully
aware of

 Include what you’d expect the system to do
“The checking account balance will be updated with

the amount entered by the user.”

 And where ambiguous, what the system is
not expected to do
“Reconciliation with the amount of funds deposited is

not expected at this time.”

Guidelines: Acceptance Criteria

Questions?

Presented by:
Bryan Liff

VP, IT Services
bliff@minerva-group.com

References

 Adapted from Kane Mar’s “Writing Stories”

 “Users Stories Applied”, Mike Cohen

 “Agile Estimating and Planning”, Mike Cohen

 http://www.ScrumAlliance.org

