
Functional Requirements

Functional requirements capture the intended behavior of the system. This behavior
may be expressed as services, tasks or functions the system is required to perform.
In product development, it is useful to distinguish between the baseline functionality
necessary for any system to compete in that product domain, and features that
differentiate the system from competitors’ products, and from variants in your
company’s own product line/family. Features may be additional functionality, or differ
from the basic functionality along some quality attribute (such as performance or
memory utilization).
Use cases have quickly become a widespread practice for capturing functional
requirements. This is especially true in the object-oriented community where they
originated, but their applicability is not limited to object-oriented systems.

Use Cases

A use case defines a goal-oriented set of interactions between external actors and the
system under consideration.
Actors are parties outside the system that interact with the system (UML 1999, pp.
2.113- 2.123).
An actor may be a class of users, roles users can play, or other systems. Cockburn
(1997) distinguishes between primary and secondary actors. A primary actor is one
having a goal requiring the assistance of the system. A secondary actor is one from
which the system needs assistance.
A use case is initiated by a user with a particular goal in mind, and completes
successfully when that goal is satisfied. It describes the sequence of interactions
between actors and the system necessary to deliver the service that satisfies the goal. It
also includes possible variants of this sequence, e.g., alternative sequences that may
also satisfy the goal, as well as sequences that may lead to failure to complete the
service because of exceptional behavior, error handling, etc. The system is treated as a
“black box”, and the interactions with system, including system responses, are as
perceived from outside the system.
Thus, use cases capture who (actor) does what (interaction) with the system, for
what purpose (goal), without dealing with system internals. A complete set of use
cases specifies all the different ways to use the system, and therefore defines all
behavior required of the system, bounding the scope of the system.
Generally, use case steps are written in an easy-to-understand structured
narrative using the vocabulary of the domain. This is engaging for users who can
easily follow and validate the use cases, and the accessibility encourages users
to be actively involved in defining the requirements.

Use cases may be described at the abstract level (business use case, sometimes called
essential use case), or at the system level (system use case). The differences between
these are the scope.

Scenarios
A scenario is an instance of a use case, and represents a single path through the use
case. Thus, one may construct a scenario for the main flow through the use case, and
other scenarios for each possible variation of flow through the use case (e.g., triggered
by options, error conditions, security breaches, etc.). Scenarios may be depicted using
sequence diagrams.

Structuring Use Cases
UML (1999) provides three relationships that can be used to structure use cases. These
are generalization, include and extends. An include relationship between two use
cases means that the sequence of behavior described in the included (or sub)
use case is included in the sequence of the base (including) use case.
Including a use case is thus analogous to the notion of calling a subroutine (Coleman,
1998). The extends relationship provides a way of capturing a variant to a use case.
Extensions are not true use cases but changes to steps in an existing use case.
Typically extensions are used to specify the changes in steps that occur in order to
accommodate an assumption that is false (Coleman, 1998). The extends relationship
includes the condition that must be satisfied if the extension is to take place, and
references to the extension points which define the locations in the base (extended) use
case where the additions are to be made.
A generalization relationship between use cases “implies that the child use case
contains all the attributes, sequences of behavior, and extension points defined in the
parent use case, and participates in all relationships of the parent use case.” The child
use case may define new behavior sequences, as well as add behavior into and
specialize existing behavior of the parent. (UML, 1999)

Use Case Guidelines

Creation
The following provides an outline of a process for creating use cases:
• Identify all the different users of the system
• Create a user profile for each category of user, including all the roles the users play that are relevant

to the system.
For each role, identify all the significant goals the users have that the system will
support. A statement of the system’s value proposition is useful in identifying significant
goals.
• Create a use case for each goal, following the use case template. Maintain the same level of

abstraction throughout the use case. Steps in higher-level use cases may be treated as goals for
lower level (i.e., more detailed), sub-use cases.

• Structure the use cases. Avoid over-structuring, as this can make the use cases harder to follow.
• Review and validate with users.

Use Case Template

Although use cases are part of UML, there is no template for writing use cases. The
following is Derek Coleman’s proposal for a standard use case template (Coleman,
1998), with some minor modifications.

Use Case Use case identifier and reference number and modification history
Each use case should have a unique name suggesting its purpose. The name
should express what happens when the use case is performed. It is
recommended that the name be an active phrase, e.g. “Place Order”. It is
convenient to include a reference number to indicate how it relates to other use
cases. The name field should also contain the creation and modification history of
the use case preceded by the keyword history.

Description Goal to be achieved by use case and sources for requirement
Each use case should have a description that describes the main business goals
of the use case. The description should list the sources for the requirement,
preceded by the keyword sources.

Actors List of actors involved in use case
Lists the actors involved in the use case. Optionally, an actor may be indicated as
primary or secondary.

Assumptions Conditions that must be true for use case to terminate successfully
Lists all the assumptions necessary for the goal of the use case to be achieved
successfully. Each assumption should be stated as in a declarative manner, as a
statement that evaluates to true or false. If an assumption is false then it is
unspecified what the use case will do. The fewer assumptions that a use case has
then the more robust it is. Use case extensions can be used to specify behavior
when an assumption is false.

Steps Interactions between actors and system that are necessary to achieve goal
The sequence of interactions necessary to successfully meet the goal. The
interactions between the system and actors are structured into one or more
steps which are expressed in natural language. A step has the form
<sequence number><interaction>
Conditional statements can be used to express alternate paths through the use
case. Repetition and concurrency can also be expressed (see Coleman, 1997, for
a proposed approach to do doing so).

Variations (optional) Any variations in the steps of a use case
Further detail about a step may be given by listing any variations on the manner
or mode in which it may happen.
<step reference> < list of variations separated by or>

Non-Functional List any non-functional requirements that the use case must meet.
The nonfunctional requirements are listed in the form:
<keyword> : < requirement>
Non-functional keywords include, but are not limited to Performance,
Reliability, Fault Tolerance, Frequency, and Priority. Each requirement is
expressed in natural language or an appropriate formalism.

Issues List of issues that remain to be resolved
List of issues awaiting resolution. There may also be some notes on possible
implementation strategies or impact on other use cases.

	Functional Requirements
	Use Cases
	Scenarios
	Structuring Use Cases

	Use Case Guidelines
	Creation
	Use Case Template

