











Microsoft Dynamics CRM 4.0
SAMPLE: Performance and Scalability Assessment of Customer Implementation
White Paper
Date: February 2009
[bookmark: _Toc122522330]Acknowledgements[image: Dynmc_h_c]
Initiated and released by the Microsoft Dynamics CRM Engineering for Enterprise (MS CRM E2) Team, this document was developed with support from across the organization and in direct collaboration with the following:
Key Contributors

20
[image: blue_bar_bottom]
FEBRUARY 2009	SAMPLE: Performance and Scalability Assessment of Customer Implementation
19
[image: blue_bar_bottom]
SAMPLE: Performance and Scalability Assessment of Customer Implementation	February 2009
Peter Simons (Microsoft)
Dudu Benabou (Microsoft)
Metin Koc (EDS)
Ronny Klinder (EDS)
Ronny Leger (Infoman AG)

Technical Reviewers

Nirav Shah (Microsoft)
Amir Ariel (Microsoft)

The MS CRM E2 Team recognizes their efforts in helping to ensure delivery of an accurate and comprehensive technical resource to support the broader CRM community.
MS CRM E2 Contributors

Amir Jafri, Program Manager
Jim Toland, Content Manager

Feedback
Please send comments or suggestions about this document to the MS CRM E2 Team feedback alias (entfeed@microsoft.com).
 (
Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a way that helps you drive business success.
U.S. and Canada Toll Free 1-888-477-7989
Worldwide +1-701-281-6500
www.microsoft.com/dynamics
Legal Notice
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
© 2009 Microsoft Corporation. All rights reserved.
Microsoft, Microsoft Dynamics, Microsoft Dynamics Logo, Microsoft Office Outlook, SQL Server, and Windows Server are trademarks of the Microsoft group of companies
All other trademarks are property of their respective owners.
)
[bookmark: _Toc220809417][bookmark: _Toc220300627][bookmark: _Toc220300567][bookmark: _Toc220299073][bookmark: _Toc217189207][bookmark: _Toc218301388][bookmark: _Toc220809417][bookmark: _Toc220300627][bookmark: _Toc220300567][bookmark: _Toc220299073][bookmark: _Toc217189207][bookmark: _Toc218301388][image: mslogo]
[bookmark: _Toc220809417][bookmark: _Toc220300627][bookmark: _Toc220300567][bookmark: _Toc220299073][bookmark: _Toc217189207][bookmark: _Toc218301388]Preface
Working closely with contacts in a variety of technical, support, and field roles, the MS CRM Engineering for Enterprise (E2) team receives documentation and resources from which the broader CRM community can benefit.
This paper is based on the results of a performance and scalability assessment that was performed by the UK MCS team on the Microsoft Dynamics CRM implementation at Leumi Card. The testing was designed to simulate real world scenarios of an enterprise customer. This document contains details of the testing methodology and environment, as well as the attending results of the performance and scalability assessment.
Note: Leumi Card was established in 2000 and currently the second largest credit company in Israel. The company provides an extensive array of issuing and clearing services, as well as payment and credit solutions. Leumi Card has already issued more than 1.6 million cards and provides clearing services for 40,000 merchants. Leumi Card is part of the Leumi group, the oldest and largest bank in Israel. Headquartered in the city of Bnei-Brak, the company has more than 1,000 employees.


[bookmark: _Toc218924505]<Customer>[image: BAR]
[bookmark: _Toc218924506]Performance and Scalability Lab
[bookmark: _Toc218924507]Prepared for
[bookmark: _Toc218924508]<Customer>
November 200x
[bookmark: _Toc218924509]Version 1.0 Final
[bookmark: _Toc218924510]Prepared by
[bookmark: _Toc218924511]CRM Consultant
<alias>@microsoft.com
Contributor
Solution Architect

Revision and Signoff Sheet
Change Record
	Date
	Author
	Version
	Change reference

	
	
	.1
	Initial draft for review/discussion

	
	
	1.0
	Updated with additional content and feedback from review comments

	
	
	
	


Reviewers
	Name
	Version approved
	Position
	Date

	
	
	
	

	
	
	
	

	
	
	
	


Distribution
	Name
	Position

	
	CIO

	
	CRM Project Manger

	
	CTO CRM project

	
	<C-Team> – Project Manager

	
	<C-Team> – CRM Architect


Table of Contents
Executive Summary	7
Environment Overview	10
Configuration Overview	12
Custom Entities	12
Other Changes	12
Workflow Overview	14
Close Task – New Business or New Card Holder	14
Closing Case Asynchronous	15
Interface Update – Synchronous	15
New-Case Synchronous	16
Opening a New Card Holder – Asynchronous	17
Opening a potential Business – Asynchronous	17
Synchronous Workflow Design	18
Introduction	18
Design Overview	18
Process Overview	18
CRM Configuration Changes	19
Scalability	19
Design Summary	19
Test Cases	20
Use Case 1 – Run Report	20
Use Case 2 – Inbound Call / New Case	20
Use Case 2 Cancelled	20
Use Case 2 Stolen	21
Use Case 2 360	21
Use Case 3 – Opening a Potential New Business record	22
Use Case 4 – Opening a New Card Holder record	22
Test Approach	23
Platform	23
CRM Configuration	24
Custom Components	24
Data	24
Test Scripts	24
Test Results	25
2 Hour 1200 User Load at Realistic Level with Synchronous Workflow	25
Test Overview	25
Test Metrics	25
System Under Test	27
8 Hour Full User Load with High Workload but no Synchronous Workflow (3 Agents)	28
Test Overview	28
Test Metrics	28
System under Test	32
Workflow Throughput Tests	35
Test Overview	35
Test Findings	35
Availability Tests	36
Test Overview	36
Test Findings	36
Summary and Recommendations	37
Conclusion	39
Appendix A – Additional Dynamics CRM 4.0 Benchmark Testing Results	40
Appendix B – Workflow Settings in CRM	41
Appendix C – Microsoft “Velocity”	43
[bookmark: _Toc222634512][bookmark: _Toc220809679][bookmark: _Toc220300569][bookmark: bmBodyStart]Executive Summary
Microsoft Dynamics™ CRM business software is designed to help enterprise achieve a 360-degree view of their customers across marketing, sales, and service. Engineered to scale efficiently to the needs of the largest global deployments, Microsoft Dynamics CRM has been tested for user scalability, data scalability, and wide area network performance (see Appendix A). Given the extensive configuration and customization options available within Microsoft Dynamics CRM, and the different usage patterns that organizations have, Load Testing often provides the most appropriate mechanism to assist in infrastructure design, sizing and validating custom solution design approaches, especially where there is a high level of configuration or Workflow.
This document provides details of the load test exercise conducted by the Microsoft International Lighthouse team with involvement from the <Customer> team (<C-Team>), Microsoft Consulting Services, EDS and Infoman. The exercise included setting up a testing environment of Microsoft Dynamics CRM 4.0 running on Microsoft® Windows Server® 2003 operating system and Microsoft SQL Server® 2005 database software.
Testing results demonstrated that Microsoft Dynamics CRM can scale to meet the needs of <Customer>, running an enterprise-level, mission-critical workload of 1,200 concurrent users against a realistically sized database (Card Holders: > 1 million, Credit Cards > 1.5 million, Cases > 18 million) while maintaining performance with acceptable response times. In most cases, the testing results significantly exceeded the volumes required by <Customer>.
In a two-hour test simulating a realistic level of activity with synchronous workflow on the “cancelled card” requests, the following results were obtained:
	Scenario
	Total
Tests
	Failed Tests
(% of total)
	Avg. Test
Time (sec)

	Run a complex report
	461
	0 (0)
	15.6

	Run a full end to end business process for an inbound call including registering the call as cancelled (initiating multiple asynchronous workflows and one synchronous workflow). 
	2,557
	0 (0)
	5.19

	Run a full end to end business process for an inbound call including registering the call as stolen (initiating multiple asynchronous workflows).
	2,562
	0 (0)
	1.82

	Run a full end to end business process for an inbound call without changing the card status (initiating multiple asynchronous workflows).
	5,770
	0 (0)
	0.93

	Create a new cardholder record (initiating 1 asynchronous workflow)
	632
	0 (0)
	0.55

	Create a new business record (initiating 1 asynchronous workflow)
	612
	0 (0)
	0.44


These results show that more than 10,000 full business processes were completed in a two-hour period by 1200 simulated users. In most cases the end-to-end business process was completed in less than five seconds, with the exception of the report that ran for an average of 15 seconds. It is important to note that each of these processes includes multiple requests and multiple pages (details of each process is included later in this document). Timings obtained during the tests do not include rendering time on the client. Complex pages can take significantly longer to render, depending on the client machine specification.
Availability tests were also conducted to show the impact of a single component failure (e.g. the failure of a single CRM Server or SQL Server). In all cases, the system continued to run cleanly. The only interruption to service occurred during the actual failover of the SQL Cluster, which took fewer than 10 seconds. Messages to users over this period were clear and allowed the user to return to the previous page.
Testing results were achieved with some customizations (as described in this document) to simulate <Customer>’s Microsoft Dynamics CRM deployment. These included:
· Custom Entities
· Entities configured with large volumes of attributes
· JSCRIPT used to hide UI components based on user role
· A 360 Degree View of the Customer using multiple iFrames
· Workflow with Custom development where necessary:
· Calling web services from within a workflow
· Sending Emails from workflow
· Custom Synchronous Workflow POC
· A Custom Report
Standard optimization techniques were applied using guidelines published in the Microsoft Dynamics CRM 4.0 Optimizing Performance Whitepaper, however it is expected that significant additional performance gains would be possible with further tuning. Note that with any solution of this size and complexity, a level of performance tuning and optimization is required not only for the live solution, but also during the project’s Design, Build and Test phases.
The load test work indicated a number of outstanding issues that required additional work:
ASync Workflow: Currently, there is a lack of documentation about the inner workings of the Microsoft Dynamics CRM asynchronous workflow engine. <Customer> wants a much better understanding of workflow within CRM 4.0, in particular:
· Workflow Status - How to monitor current workflow status (custom SQL was built during the testing to help with this, it was though reverse engineering the SQL tables and via trial and error). It would help to have some agreed / provided reports that show the state of workflow in the system, the current backlog etc.
· Workflow Tuning – The function of all the parameters in the CRM DeploymentProperties table; recommendations for optimizing these settings for <Customer>. Again through trial and error, some significant improvements were made to reduce the typical number of in process workflows from over 1000 to fewer than 5 under the same workload.
· Workflow Stability: How to identify any workflows that have timed out and retry them to ensure that the workflows complete successfully. Given the volume of workflows they are looking at this cannot be a manual process and they need to be able to rely on the workflow completing.
Synchronous Workflow: A method of prioritizing Synchronous Workflow is required. We have achieved the target throughput but if at any point the system builds up a backlog for any reason all synchronous workflow in the system get queued behind the backlog and the synchronous workflows in the UI stop responding. A method of prioritization needs to be identified for the current synchronous workflow solution to be a realistic option.
Duplicate Detection: A solution to allow the frequency of the duplicate detection matchcode system jobs to be updated. We tried changing the parameters we expected this to be in the deployment properties table but it appeared to have no effect. Some further work in this area is required. It may be as simple as republishing the duplicate detection rules after applying the changes.
While some additional information is included in this document, further work is required as part of the implementation project. In particular additional work will be required to design and build a production quality Synchronous workflow solution.
[bookmark: _Toc220300570]Disclaimer
<Customer>’s requests formed the basis of the test design, test scenarios, database sizing, and record counts to be used in the testing. All results of this test were based on the standard Dynamics CRM 4.0 application with a limited set of configuration and customization changes designed to simulate the expected final solution, however the ultimate solution for <Customer> will be different and could therefore perform differently. Because this test is based on standard CRM processes, Microsoft cannot take any accountability and/or legal responsibility that:
· The used test cases will reflect the daily processes in the projected <Customer> Solution. 
· The future <Customer> Solution with the modified processes will perform as it did in the test environment.

[bookmark: _Toc222634513][bookmark: _Toc220809680][bookmark: _Toc220300571]Environment Overview
The following environment was built at the Microsoft Technology Centre (MTC) in Munich:

The database was stored on SAN disks as defined below:

The initial data load on the database led to the tests being carried out against a 50GB database with the following characteristics:
· Card Holders: > 1 million
· Credit Cards > 1.5 million
· Cases > 18 million
[bookmark: _Toc220809681][bookmark: _Toc220300572]Key Points
· 4 Dynamics CRM Servers (Application Servers) installed in Load Balanced group using Windows Load Balancing Services (final tests were run with only 2 servers in the load balanced group)
· 2 Dynamics CRM Servers (Platform Servers) installed in Load Balanced group using Windows Load Balancing Services
· 2 Microsoft SQL Server 2005 x64 Servers installed in a failover cluster using Microsoft Cluster Services (Active/Passive configuration)
· The SQL Reporting Services was configured to run the reports against the live database. This can impact performance under a heavy reporting load. Given the level of reporting used within the tests this was deemed to be a suitable approach.
· SQL Integration Services Server was not used.
[bookmark: _Toc222634514][bookmark: _Toc220809682][bookmark: _Toc220300573]Configuration Overview
The configuration changes were based on the design defined in the document: “<Customer> Performance and Scalability Lab”. This section includes a few of the key items actually configured on the test system.
[bookmark: _Toc222634515][bookmark: _Toc220809683][bookmark: _Toc220300574]Custom Entities
· Bank Account (including relationships with Credit Cards and Card Holders)
[image: ]
· Credit Card (including relationship with Cases)
[image: ]
[bookmark: _Toc222634516][bookmark: _Toc220809684][bookmark: _Toc220300575]Other Changes
· Contact Entity renamed to Card Holder (various configuration changes made including the addition of four related entities included as iFrames on the General Tab):
[image: ]
· Account Entity renamed to Business (various configuration changes made)
· Case Screen Updated:
[image: ]
· Large number of additional fields configured against the Case entity:
[image: ]
· Custom aspx, jscript and workflow assemblies built
[bookmark: _Toc222634517][bookmark: _Toc220809685][bookmark: _Toc220300576]Workflow Overview
The workflows created were based on the design defined in the document: “<Customer> Performance and Scalability Lab”. This section includes details of the actual configuration of each workflow on the test system.
[bookmark: _Toc222634518][bookmark: _Toc220809686][bookmark: _Toc220300577]Close Task – New Business or New Card Holder
[image: ]

[bookmark: _Toc222634519][bookmark: _Toc220809687][bookmark: _Toc220300578]Closing Case Asynchronous
[image: ]
[bookmark: _Toc222634520][bookmark: _Toc220809688][bookmark: _Toc220300579]Interface Update – Synchronous
[image: ]
[bookmark: _Toc222634521][bookmark: _Toc220809689][bookmark: _Toc220300580]New-Case Synchronous
[image: ]
[image: ]
[bookmark: _Toc222634522][bookmark: _Toc220809690][bookmark: _Toc220300581]Opening a New Card Holder – Asynchronous
[image: ]
[bookmark: _Toc222634523][bookmark: _Toc220809691][bookmark: _Toc220300582]Opening a potential Business – Asynchronous
[image: ]
[bookmark: _Toc222634524][bookmark: _Toc220809692]Synchronous Workflow Design
[bookmark: _Toc222634525][bookmark: _Toc220809693]Introduction
Microsoft CRM 4.0 supports a-synchronous workflows out-of-the-box, but with some coding extensibilities, it can also support synchronous workflows. Using CRM product group recommendations, we determined how to configure selected workflow parameters in the database and how to execute a workflow by using its workflow ID. This appendix explains our process for implementing synchronous workflows during the CRM performance testing for <Customer>, providing the steps that helped leverage the CRM product group suggestions into a working proof of concept.
[bookmark: _Toc222634526][bookmark: _Toc220809694]Design Overview
Achieving sync workflows required changing parameters in the MSCRM_CONFIG table as well as developing 1) an ASP.NET web page, 2) an ASP.NET web service, and 3) a workflow activity.
   
[bookmark: _Toc222634527][bookmark: _Toc220809695]Process Overview
To achieve sync workflow, we followed this process.
	Part 1
	· CRM page needs to execute a sync workflow with a specific Id
· CRM page calls (using java script) an ASP.NET web page and passes the Id of the workflow to be invoked
· ASP.NET web page activates the workflow with the given Id
· ASP.NET web page begins to wait (intervals of 500 milliseconds) for an HttpContext.Current.Cache update with the Id of the workflow
· ASP.NET web page terminates

	Part 2
	· Workflow with given Id executes.
· The last step is an End Activity.
· The end activity calls an ASP.NET web service to update the HttpContext.Current.Cache with the workflow Id
· Workflow terminates.



[bookmark: _Toc222634528][bookmark: _Toc220809696]CRM Configuration Changes
These configurations were done so that the workflow service would pick up the workflows as fast as it can and would not create a backlog of workflows and overload the workflows stack. Changes were made in the MSCRM_CONFIG database, on the dbo.DeploymentProperties table.
Parameters that were changed:

· AsyncSelectInterval
· Default value: 5
· New value: 1
· AsyncStateStatusUpdateInterval
· Default value: 5
· New value: 1
· AsyncItemsInMemoryLow
· Default value: 1000
· New value: 10
· AsyncItemsInMemoryHigh
· Default value: 2000
· New value: 20
· [bookmark: _Toc222634529][bookmark: _Toc220809697]Scalability
To make this solution as scalable as possible, we need to add a synchronization mechanism to sync the in memory status of the workflows for each of the application servers in our data center which are connected in an NLB manner.
Because the sync workflows run in multiple platform servers and execute web services calls against numerous application servers, it is hard to guarantee or even predict whether the end web service that is called will be redirected to the application server that was in charge of running the given workflow. As a result, the implementation requires a mechanism to synchronize the memory, such as Microsoft’s distributed cache solution code named “Velocity.”
Note: For more information about this solution, see Appendix C: Microsoft “Velocity”.
[bookmark: _Toc222634530][bookmark: _Toc220809698]Design Summary
To summarize, we addressed the issue of invoking a workflow in the CRM system using the CRM built in API. We also used a signaling mechanism based on memory, to signal to a client that the invoked workflow has ended.
We leverage the power of distributed cache mechanism to provide us with a scalable solution that replicates the in memory workflow state across our server farm. To achieve that we used Microsoft “Velocity” technology which is now in a “CTP2” stage and is scheduled for RTM later this year. We use the “Embedded Mode” deployment model, which made Velocity part of our ASP.NET application.
Important: This solution was built with a very quick design, with no formal development life cycle. It was intended as a proof of concept (POC) to show that running a synchronous workflow on Microsoft CRM 4.0 is possible.

[bookmark: _Toc222634531][bookmark: _Toc220809699][bookmark: _Toc220300588]Test Cases
A number of test cases were defined and we built a coded web tests in Visual Studio Team Suite. These were implemented along with the Microsoft Dynamics CRM Performance and Stress Testing Toolkit.
[bookmark: _Toc222634532][bookmark: _Toc220809700][bookmark: _Toc220300589]Use Case 1 – Run Report
This use case is to run a report. A custom report was therefore built within CRM to simulate a report being run. The full process simulated is:
User opens the CRM system
The incoming cases and tasks screen is loaded
Navigate to CRM workspace -> Reports and open a report (ex: all cases handled by each CSR in a certain period)
The coded web test used to simulate this request is embedded here: 
[bookmark: _Toc222634533][bookmark: _Toc220809701][bookmark: _Toc220300590]Use Case 2 – Inbound Call / New Case
Use Case 2 was built to simulate a common inbound call business process where a card is either cancelled or stolen. In the end this use case was split into three separate use cases that were all very similar as defined below:
[bookmark: _Toc222634534][bookmark: _Toc220300591]Use Case 2 Cancelled
Inject card holder to the screen to simulate a “CTI” system request.
CRM opens the “360 Degree screen”.
The representative navigates to the Cases grid
The representative performs a search in the “Case screen”: "Show all the cases from two last week’s", "Show all cases by provided specification and status".
The representative opens a new case and populates the required fields then hits Save.
· This will trigger the "New Case" workflow which will run asynchronously.
The representative will change the Credit Card status to “Cancelled”.
· This will trigger the "Credit Card Status change" workflow which will run synchronously.
The representative will close the Case.
Which means change its status field to “Closed” and then hit Save.
· This will trigger the "Closing Case" workflow which will run asynchronously.
The coded web test used to simulate this request is embedded here: 

[bookmark: _Toc222634535][bookmark: _Toc220300592]Use Case 2 Stolen
Inject card holder to the screen to simulate a “CTI” system request.
CRM opens the “360 Degree screen”.
The representative navigates to the Cases grid
The representative performs a search in the ”Case screen” : "Show all the cases from two last week’s", "Show all cases by provided specification and status".
The representative opens a new case and populates the required fields then hits Save.
· This will trigger the "New Case" workflow which will run asynchronously.
The representative will change the Credit Card status to “Stolen”.
· This will trigger the "Credit Card Status change" workflow which will run synchronously and make a call to an external web service with a delay of 10 seconds.
The representative will close the Case.
Which means change its status field to “Closed” and then hit Save.
· This will trigger the "Closing Case" workflow which will run asynchronously.
The coded web test used to simulate this request is embedded here: 
[bookmark: _Toc222634536][bookmark: _Toc220300593]Use Case 2 360
The purpose of this use case was to simulate a more likely scenario where the user views the 360 degree view of the customer as part of a call however they do not initiate a synchronous workflow. Instead a simpler a-synchronous workflow is initiated. This reduces the load on the workflow server and is more realistic of the expected load likely to occur on the system under real use.
Inject card holder to the screen to simulate a “CTI” system request.
CRM opens the “360 Degree screen”.
The representative navigates to the Cases grid
The representative performs a search in the ”Case screen” : "Show all the cases from two last week’s", "Show all cases by provided specification and status".
The representative opens a new case and populates the required fields then hits Save.
· This will trigger the "New Case" workflow which will run asynchronously.
The representative will close the Case.
Which means change its status field to “Closed” and then hit Save.
· This will trigger the "Closing Case" workflow which will run asynchronously.
The coded web test used to simulate this request is embedded here: 

[bookmark: _Toc222634537][bookmark: _Toc220809702][bookmark: _Toc220300594]Use Case 3 – Opening a Potential New Business record
This process simulates the creation of a new business account:
1. The representative will create the New Business Account entity and Populate the required fields for this entity.
2. The representative will Save the account which will trigger the "Opening a potential Business" workflow which will be run asynchronously.
The coded web test used to simulate this request is embedded here: 
[bookmark: _Toc222634538][bookmark: _Toc220809703][bookmark: _Toc220300595]Use Case 4 – Opening a New Card Holder record
This process simulates the creation of a new card holder record:
1. The representative will create the New Card Holder entity and populate the required fields for this entity.
2. The representative will Save the account which will trigger the "Opening a New Card Holder" workflow which will be run asynchronously.
The coded web test used to simulate this request is embedded here: 

[bookmark: _Toc222634539][bookmark: _Toc220809704][bookmark: _Toc220300596]Test Approach
During this performance and scalability lab a large number of test iterations were carried out without capturing or documenting the results of each test. This is due to the need to tune and optimize a number of components in order to meet the required throughput.



The following specific items were changed on an iterative basis from the initial build as part of the <Customer> Performance and Scalability Lab.
[bookmark: _Toc222634540][bookmark: _Toc220809705][bookmark: _Toc220300597]Platform
· Tests were carried out with different combinations of hardware, adding or removing servers to determine the hardware requirements. Final configuration required:
· two CRM application servers (each 2 way Dual Core with 8GB)
· two CRM platform servers (each 2 way Dual Core with 8GB)
· Active / Passive: SQL 2005 Cluster x64 (4 way Quad Core with 32GB)
· One SQL Reporting Services Server (2 way Dual Core with 8GB)
· One additional server to support synchronous workflow requests (2 way Dual Core with 8GB)
· Changing SQL Server settings. Final configuration included:
· Snapshot Isolation Mode
· Additional Indexes as identifies by SQL Performance Reports and Database Engine Tuning Wizard

[bookmark: _Toc222634541][bookmark: _Toc220809706][bookmark: _Toc220300598]CRM Configuration
· Various configuration changes were made to reduce the impact on the database of general navigation in the application:
· Use of Null or reduced views where appropriate to let the user select the most appropriate filter for the data rather than returning all records.
· Reducing the number of search columns on some entities so that only the required columns were searched.
[bookmark: _Toc222634542][bookmark: _Toc220809707][bookmark: _Toc220300599]Custom Components
· Custom Components for the Synchronous Workflow were changed multiple times to provide a more perform end solution that did not need to continually poll the CRM system for the state of the workflow.
[bookmark: _Toc222634543][bookmark: _Toc220809708][bookmark: _Toc220300600]Data
· A number of data fixes were required to ensure the tests completed successfully, realistically and with acceptable performance:
· Data Ownership - incorrect ownership either leads to users have no data on which to work and therefore tests failing, or users having too much data which in turn impacts performance. 
· Missing Relationships can lead to test failures
· Number of Active vs. Closed items: This had a performance impact as the standard views were working on all Active items e.g. Active Cases (20+ million) when it should have been working against about 1 million cases.
[bookmark: _Toc222634544][bookmark: _Toc220809709][bookmark: _Toc220300601]Test Scripts
· The test scripts were updated a number of times and new test scripts added where necessary to help to simulate realistic business processes.
· The think time between tests was changed multiple times to try to get the expected volumes of business processes to a realistic level. Initially we were generating far too many business processes at seeing performance problems however it was agreed that it was at an unrealistic level.
[bookmark: _Toc222634545][bookmark: _Toc220809710][bookmark: _Toc220300602]Test Results
[bookmark: _Toc222634546][bookmark: _Toc220809711][bookmark: _Toc220300603]2 Hour 1200 User Load at Realistic Level with Synchronous Workflow
[bookmark: _Toc222634547][bookmark: _Toc220300604]Test Overview
The test simulated the full load of users at a realistic activity level including synchronous workflow for a 2 hour period. The purpose of the test was to show under a realistic load that the system could provide good response times including items that use Synchronous Workflow. For this test only two CRM application servers and two CRM platform servers were used.
[bookmark: _Toc222634548][bookmark: _Toc220300605]Test Metrics
The following table shows the number of test cases run over the two hour period and the test mix between each of the use cases:
	Name
	Scenario
	Total Tests
	Failed Tests (% of total)

	UseCase1Coded
	LoadTest for Combined Use Cases
	461
	0 (0)

	UseCase2Coded_cancelled
	LoadTest for Combined Use Cases
	2,557
	0 (0)

	UseCase2Coded_stolen
	LoadTest for Combined Use Cases
	2,562
	0 (0)

	UseCase2Coded_360
	LoadTest for Combined Use Cases
	5,770
	0 (0)

	UseCase4Coded
	LoadTest for Combined Use Cases
	632
	0 (0)

	UseCase3Coded
	LoadTest for Combined Use Cases
	612
	0 (0)


The response times for each of these test cases are shown below:
	Counter
	Test Case
	Min
	Max
	Avg

	Avg. Test Time
	UseCase2Coded_stolen
	1.24
	3.54
	1.59

	Avg. Test Time
	UseCase2Coded_cancelled
	3.77
	6.11
	4.77

	Avg. Test Time
	UseCase2Coded_360
	0.67
	1.17
	0.81

	Avg. Test Time
	UseCase1Coded
	11.0
	23.1
	13.2

	Avg. Test Time
	UseCase3Coded
	0.30
	0.70
	0.42

	Avg. Test Time
	UseCase4Coded
	0.34
	0.74
	0.48


The response times for each page within each test case are shown below (slowest first):
	URL (Link to More Details)
	Scenario
	Test
	Avg. Page Time (sec)

	http://10.2.4.15:5555/Reserved.ReportViewerWebControl.axd (Reporting)
	LoadTest / Combined Use Cases
	UseCase1Coded
	6.87

	http://10.2.4.20/WaitPage/WaitPage.aspx (synchronous workflow)
	LoadTest / Combined Use Cases
	UseCase2Coded_cancelled
	3.37

	http://10.2.4.15:5555/CRMReports/rsviewer/reportviewer.aspx
	LoadTest / Combined Use Cases
	UseCase1Coded
	1.33

	http://10.2.4.15:5555/MTC/sfa/conts/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_stolen
	0.30

	http://10.2.4.15:5555/MTC/sfa/conts/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_360
	0.29

	http://10.2.4.15:5555/MTC/sfa/conts/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_cancelled
	0.28

	http://10.2.4.15:5555/MTC/CRMReports/home_reports.aspx
	LoadTest / Combined Use Cases
	UseCase1Coded
	0.27

	http://10.2.4.15:5555/MTC/sfa/conts/areas.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_stolen
	0.27

	http://10.2.4.15:5555/MTC/sfa/conts/areas.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_cancelled
	0.27

	http://10.2.4.15:5555/MTC/sfa/conts/areas.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_360
	0.25

	http://10.2.4.15:5555/MTC/_root/homepage.aspx
	LoadTest / Combined Use Cases
	UseCase3Coded
	0.21

	http://10.2.4.15:5555/MTC/_root/homepage.aspx
	LoadTest / Combined Use Cases
	UseCase4Coded
	0.21

	http://10.2.4.15:5555/MTC/sfa/conts/edit.aspx
	LoadTest / Combined Use Cases
	UseCase4Coded
	0.13

	http://nlb1.poc4.mtc.de/SampleData/SampleData.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_cancelled
	0.13

	http://nlb1.poc4.mtc.de/SampleData/SampleData.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_360
	0.12

	http://nlb1.poc4.mtc.de/SampleData/SampleData.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_stolen
	0.12

	http://10.2.4.15:5555/MTC/cs/cases/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_cancelled
	0.12

	http://10.2.4.15:5555/MTC/cs/cases/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_stolen
	0.12

	http://10.2.4.15:5555/MTC/sfa/accts/edit.aspx
	LoadTest / Combined Use Cases
	UseCase3Coded
	0.10

	http://10.2.4.15:5555/MTC/CrmReports/Viewer/viewer.aspx
	LoadTest / Combined Use Cases
	UseCase1Coded
	0.097

	http://10.2.4.15:5555/MTC/userdefined/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_cancelled
	0.088

	http://10.2.4.15:5555/MTC/userdefined/edit.aspx
	LoadTest / Combined Use Cases
	UseCase2Coded_stolen
	0.084

	http://10.2.4.15:5555/MTC/AppWebServices/advancedfind.asmx
	LoadTest / Combined Use Cases
	UseCase1Coded
	0.032

	http://10.2.4.15:5555/MTC/AppWebServices/appgridwebservice.asmx
	LoadTest / Combined Use Cases
	UseCase4Coded
	0.030

	http://10.2.4.15:5555/MTC/_forms/FormScript.js.aspx
	LoadTest / Combined Use Cases
	UseCase4Coded
	0.019

	http://10.2.4.15:5555/MTC/_forms/FormScript.js.aspx
	LoadTest / Combined Use Cases
	UseCase3Coded
	0.014

	http://10.2.4.15:5555/CRMReports/viewer/filterxmltosummary.xsl
	LoadTest / Combined Use Cases
	UseCase1Coded
	0.0044


Notes
· UseCase1 generates a report and this was taking between 11 and 23 seconds to generate. Further tuning on the report would certainly lead to improved performance for this test case. The reason for the inclusion of this test is to highlight that the running of reports does not impact online performance where the solution is adequately sized.
· For this test run the only workflows that were making synchronous requests were “UseCase2Coded cancelled”, the other test cases however still made asynchronous requests. The synchronous workflow leads to the slightly slower response times in this use case. Total Workflows over the two hours 12,133.
· At no point during the test were there more than 20 waiting/processing workflows

[bookmark: _Toc222634549][bookmark: _Toc220300606]System Under Test
[image: ltm_graph1]
		Counter
	Category
	Computer
	Color
	Range
	Min
	Max
	Avg

	% Processor Time
	Processor
	CRM APP 1
	
	100
	0.052
	17.8
	9.21

	Available MBytes
	Memory
	CRM APP 1
	
	10.000
	6,807
	6,824
	6,820

	% Processor Time
	Processor
	CRM APP 2
	
	100
	0.052
	18.2
	10.3

	Available MBytes
	Memory
	CRM APP 2
	
	10.000
	6,897
	6,929
	6,926

	% Processor Time
	Processor
	CRM PLAT 1
	
	100
	0.039
	74.0
	25.0

	Available MBytes
	Memory
	CRM PLAT 1
	
	10.000
	6,838
	6,888
	6,868

	% Processor Time
	Processor
	CRM PLAT 2
	
	100
	0.039
	69.4
	20.3

	Available MBytes
	Memory
	CRM PLAT 2
	
	10.000
	6,878
	6,940
	6,921

	% Processor Time
	Processor
	Synch Workflow /
Report Server
	
	100
	0.026
	33.5
	8.95

	Available MBytes
	Memory
	Synch Workflow /
Report Server
	
	10.000
	3,608
	4,607
	4,093

	% Processor Time
	Processor
	SQL Server
	
	100
	0.43
	26.7
	8.67

	Available MBytes
	Memory
	SQL Server
	
	100.000
	6,705
	11,705
	9,302





Notes
· CRM Platform Servers are the most heavily used component. Under any significant workflow load, they can run between 60% and 90% utilized in terms of CPU.
· The CRM Application Servers ran under very low CPU utilization (less than 20%) throughout the test.
· The SQL Server ran under low CPU utilization (less than 30%) throughout the test.

[bookmark: _Toc222634550][bookmark: _Toc220809712][bookmark: _Toc220300607]8 Hour Full User Load with High Workload but no Synchronous Workflow (3 Agents)
[bookmark: _Toc222634551][bookmark: _Toc220300608]Test Overview
The test simulated the full load of users at an increased level of activity. The purpose of the test was to look for performance degradation over time, memory leaks etc. For this test only two CRM application servers and two CRM platform servers were used.
Unfortunately during the running of these tests one of the agent machines that are used to drive the tests ran out of memory after 5.5 hours. This caused spurious results at the end of the tests on this agent. In addition, at the time this test was run a stable mechanism to run Synchronous Workflow had not been developed and hence while asynchronous workflows were being used no synchronous workflows were running.
[bookmark: _Toc222634552][bookmark: _Toc220300609]Test Metrics
The following table shows the number of test cases run over the eight hour period and the test mix between each of the use cases (note that these figures have been combined from three separate agents each simulating 400 users):
	Name
	Scenario
	Total Tests
	Failed Tests (% of total)

	UseCase1Coded
	LoadTest for Combined Use Cases
	2,012
	0 (0)

	UseCase2Coded_cancelled
	LoadTest for Combined Use Cases
	35,831
	0 (0)

	UseCase2Coded_stolen
	LoadTest for Combined Use Cases
	35,832
	0 (0)

	UseCase3Coded
	LoadTest for Combined Use Cases
	17,044
	0 (0)

	UseCase4Coded
	LoadTest for Combined Use Cases
	17,034
	0 (0)


The response times for each of these test cases are shown below (note that these figures have been combined from three separate agents each simulating 400 users):
		Counter
	Test Case
	Min
	Max
	Avg

	Avg. Test Time
	UseCase1Coded
	3
	228
	41.70

	Avg. Test Time
	UseCase2Coded_cancelled
	1
	123
	2.15

	Avg. Test Time
	UseCase2Coded_stolen
	1
	117
	2.16

	Avg. Test Time
	UseCase3Coded
	0
	54
	0.62

	Avg. Test Time
	UseCase4Coded
	0
	63
	0.72






The following three charts show the performance over time for each of the three agents.
Agent 1:
[image: ltm_graph1]
		Counter
	Instance
	Color
	Range
	Min
	Max
	Avg

	User Load
	_Total
	
	1,000
	41
	400
	398

	Requests/Sec
	_Total
	
	100
	0
	35.0
	17.1

	Avg. Response Time
	_Total
	
	100
	0.15
	18.7
	0.36

	Errors/Sec
	_Total
	
	1
	0
	0.067
	0.00010

	Threshold Violations/Sec
	_Total
	
	1
	0
	0.10
	0.015

	Passed Tests
	UseCase1Coded
	
	1,000
	2
	730
	456

	Passed Tests
	UseCase2Coded_cancelled
	
	100.000
	2
	13,165
	6,539

	Passed Tests
	UseCase2Coded_stolen
	
	100.000
	2
	13,167
	6,539

	Passed Tests
	UseCase3Coded
	
	10,000
	1
	8,008
	4,030

	Passed Tests
	UseCase4Coded
	
	10,000
	1
	7,999
	4,033

	Avg. Test Time
	UseCase1Coded
	
	1,000
	3.86
	228
	40.6

	Avg. Test Time
	UseCase2Coded_cancelled
	
	1,000
	1.56
	123
	2.72

	Avg. Test Time
	UseCase2Coded_stolen
	
	1,000
	1.55
	117
	2.75

	Avg. Test Time
	UseCase3Coded
	
	100
	0.35
	53.6
	0.84

	Avg. Test Time
	UseCase4Coded
	
	100
	0.40
	63.1
	0.96





Notes
· Over the five and a half hour period that Agent1 was running tests, most metrics remained constant and there was no deterioration in performance for most test cases.
· Report performance dropped significantly, however. The report (UseCase1) initially ran in under 4 seconds, but performance generally deteriorated over the testing, resulting in very poor report performance by test end. Rather than resources on the computers, this resulted from the increase in data that the report was running against. This was confirmed by running the report after all tests had finished and seeing very slow report generation. Any reports would require further work to ensure that SQL was optimized, required indexes were generated, other technologies (such as SQL Analysis Services / Performance Point Server / etc.) were considered for complex reporting requirements.
· The high maximum response times for the other tests were a result of the spike at the end where the Agent computer ran out of memory; this led to the load agents themselves causing poor performance at the end of the test. The average figures for each of the test runs do however show that throughout the test all the other (non reporting) use cases completed on average in less than 3 seconds. This is very quick when you consider the number of pages involved in completing each process.
Agent 2:
	[image: ltm_graph1]

		Counter
	Instance
	Color
	Range
	Min
	Max
	Avg

	User Load
	_Total
	
	1,000
	17
	400
	398

	Requests/Sec
	_Total
	
	100
	0
	24.5
	10.9

	Avg. Response Time
	_Total
	
	10
	0.13
	3.35
	0.27

	Errors/Sec
	_Total
	
	0
	0
	0
	0

	Threshold Violations/Sec
	_Total
	
	1
	0
	0.067
	0.0011

	Passed Tests
	UseCase1Coded
	
	1,000
	1
	689
	398

	Passed Tests
	UseCase2Coded_cancelled
	
	100.000
	0
	12,709
	6,349

	Passed Tests
	UseCase2Coded_stolen
	
	100.000
	1
	12,709
	6,351

	Passed Tests
	UseCase3Coded
	
	10,000
	1
	5,801
	2,832

	Passed Tests
	UseCase4Coded
	
	10,000
	1
	5,801
	2,827

	Avg. Test Time
	UseCase1Coded
	
	1,000
	3.36
	215
	40.9

	Avg. Test Time
	UseCase2Coded_cancelled
	
	100
	1.27
	25.2
	1.97

	Avg. Test Time
	UseCase2Coded_stolen
	
	100
	1.34
	25.9
	1.97

	Avg. Test Time
	UseCase3Coded
	
	100
	0.28
	10.9
	0.54

	Avg. Test Time
	UseCase4Coded
	
	100
	0.33
	10.4
	0.63





Notes
· Similar characteristics are seen in the above chart with reporting performance dropping over time but with the other tests in general providing good response times.
· This agent did not run out of memory so does not have the very high maximum Test times but it does show that there were spikes where the response time did drop. Further test runs and investigation would be required to identify the cause of these spikes. 
· It is important to note with the unknown spikes that this test was run with a level of activity significantly greater than expected (more than 70,000 calls in 8 hours) and all running complex workflow activities.
· Average response times across all tests excluding reports were at less than 2 seconds.

Agent 3:
	[image: ltm_graph1]

		Counter
	Instance
	Color
	Range
	Min
	Max
	Avg

	User Load
	_Total
	
	1,000
	41
	400
	398

	Requests/Sec
	_Total
	
	100
	0
	13.0
	8.11

	Avg. Response Time
	_Total
	
	1
	0.14
	0.98
	0.27

	Errors/Sec
	_Total
	
	0
	0
	0
	0

	Threshold Violations/Sec
	_Total
	
	0
	0
	0
	0

	Passed Tests
	UseCase1Coded
	
	1,000
	1
	593
	358

	Passed Tests
	UseCase2Coded_cancelled
	
	10,000
	1
	9,957
	5,000

	Passed Tests
	UseCase2Coded_stolen
	
	10,000
	2
	9,956
	5,005

	Passed Tests
	UseCase3Coded
	
	10,000
	1
	3,235
	1,534

	Passed Tests
	UseCase4Coded
	
	10,000
	1
	3,234
	1,529

	Avg. Test Time
	UseCase1Coded
	
	1,000
	3.73
	184
	43.6

	Avg. Test Time
	UseCase2Coded_cancelled
	
	10
	1.39
	3.55
	1.75

	Avg. Test Time
	UseCase2Coded_stolen
	
	10
	1.41
	3.32
	1.76

	Avg. Test Time
	UseCase3Coded
	
	10
	0.28
	1.38
	0.49

	Avg. Test Time
	UseCase4Coded
	
	10
	0.34
	1.24
	0.57





Notes
· Similar characteristics are seen in the above chart with reporting performance dropping over time but in this instance all the other tests provided good response times.
· Agent3 did not run out of memory so does not have very high maximum Test times, and in this case, all maximums remained at reasonable levels. This suggests that the maximums hit on both the other agents likely resulted to factors on the agent rather than on the server, as otherwise they would have been seen on all agent machines. 
· Average response times for all tests excluding reports were again at less than 2 seconds.
· The spiky blue line shows the average response time. It is important to note that this is across all tests and the scale is from 0 to 1 second. So while this is spiky and increasing during the test it is not at a significantly high level or of particular importance. The reason this stands out in this graph is that a different scale has been selected by the test framework and this was not corrected before saving the chart.

[bookmark: _Toc222634553][bookmark: _Toc220300610]System under Test
For this run basic CPU and Memory counters were recorded using the Windows Server Performance Monitor tool rather than the Visual Studio test framework. The point where the metrics drop after about 5.5 hours (at approximately 3:45am) is where the first agent machine failed and therefore a third of the users (400 simulated Users) stopped running tests. The key findings are shown below:
CPU
CRM Application Servers
The following chart shows the total CPU usage on each of the CRM Application Servers. 
[image: ]
This is a very clean chart showing the servers have plenty of capacity and are running well within their capability. There is no sign of CPU increasing during the test run.
CRM Platform Servers
The following chart shows the total CPU usage on each of the CRM platform servers. These are the servers that run the CRM Workflow:
[image: ]
This chart shows the very “spiky” nature of running the CRM Workflow engine. This was particularly apparent when running multiple platform servers, as one server often takes the full load while the other sits waiting. Again there was no sign of increasing CPU throughout the test run.

CRM Database
The following chart shows the total CPU usage for the active SQL Server:
[image: ]
This chart again shows a server that is running well within its capability. There is an interesting spike at about 2:30am; however the reason for this spike is unknown. There is some sign of the CPU increasing during the load and this may be attributable to the increasingly long running reports. As previously mentioned it is important to note that this is running at a higher level of activity that is expected in the final solution. This would suggest the SQL Server is well sized in terms of CPU.
Report Server
This chart shows the SQL Report Server utilization:
[image: ]
This indicates that the report server increased in CPU utilization to the point of the agent failure, which is in line with expectations, given the increased reporting load as data is added.

Memory
CRM Application Servers
This chart shows the “Available MB” / “Committed Bytes in Use” for the Application servers:
[image: ]
It is very clear from this that there is no memory leak and that actually the server is not making use of the physical memory available to it. This may highlight that less memory in required in the application servers. The actual figures are that the Server is using 1GB and has 7GB still available.
CRM Platform Servers
This data was not captured for the CRM Platform Servers although at the time no reduction in memory was being seen.
CRM Database
The following chart shows the same memory metrics for the SQL Server:
[image: ]
Over the period of the test, the available memory on the SQL Servers clearly continued to drop, which is typical of a SQL Server’s memory profile under high use where the SQL Server contains a significant amount of data. In this case, the SQL Server caches more and more data in memory to optimize future requests. This continues until either the server has cached everything it can from the database or it nearly out of free memory.
You can constrain the memory used by SQL Server if required, though this is typically only beneficial if you are running additional applications on the SQL Server. In this case SQL Server is configured to manage its own memory resources and hence by the end of the test only 591 MB of memory are available from the 32GB of physical memory in the server.
Report Server
This chart shows the same metrics for the SQL Reporting Services Server:
[image: ]
Again this shows an expected profile of more and more data being cached. The SQL Report Server started with approximately 6GB available to it and by the end there is approximately 1.5GB free on the machine.
[bookmark: _Toc222634554][bookmark: _Toc220809713][bookmark: _Toc220300611]Workflow Throughput Tests
[bookmark: _Toc222634555][bookmark: _Toc220300612]Test Overview
A number of tests were run to see the throughput of 6000 queued workflows to identify scalability of workflow using additional asynchronous Microsoft CRM Platform servers and to determine the performance impact of queued workflows.
[bookmark: _Toc222634556][bookmark: _Toc220300613]Test Findings
Workflow performance significantly changes depending on the specific tasks carried out within the workflow. A number of tests were therefore carried out with different types of workflows and different number of servers. An overview of the findings identified during these tests is:
· A backlog of 6000 workflows with between 4 and 8 workflow steps was processed by the system with a single asynchronous server in less than 30 minutes. This is approximately 3 workflows per second or 20 workflow steps per second (based on 6 steps per workflow).
· Increasing the number of CRM Platform Servers did increase this throughput but not in a linear fashion. Four application servers took more than 20 minutes to process the same 6000 workflows. This equates to approximately 5 workflows per second or 30 workflow steps per second (based on 6 steps per workflow).
· The bottleneck with workflow requests is typically the SQL Server and in particular the asyncoperationsbase table. Further tuning this table with additional indexes and potentially placing it on a dedicated high performance array could improve performance.
· Further tuning on the individual workflow steps themselves would also be beneficial.
· Synchronous workflow requests queue in line with asynchronous requests. Therefore is a backlog of requests occurs then synchronous workflows in the User Interface stop responding as they will need to wait for their turn in the queue.
· Tuning settings held in the records in the deploymentproperties table (defined in the Synchronous Workflow section of this document) significantly impacted the size of the workflow queue and allowed implementation of the synchronous workflow feature by keeping the workflow backlog to less than 20 records throughout the tests. Under a heavier workflow load this may not be possible and could still lead to workflow backlogs.
[bookmark: _Toc222634557][bookmark: _Toc220809714][bookmark: _Toc220300614]Availability Tests
[bookmark: _Toc222634558][bookmark: _Toc220300615]Test Overview
The purpose of these tests was to see the impact of a loss of a CRM Application Server from the load balanced group and the loss of a SQL Server from the Cluster.
[bookmark: _Toc222634559][bookmark: _Toc220300616]Test Findings
The failure of a single CRM application server had no affect on end users. Given the utilization of these servers during the tests it is also expected the performance would not be significantly affected however N+1 servers is always recommended where performance is critical.
The failure of the Active SQL Server node leads to the MCS cluster failing over the SQL Services to the passive node. This took less than 10 seconds on each occasion, during this period users were unable to access the system however a warning message is displayed to the user with the option to go back to the previous page. All requests were handled gracefully.

[bookmark: _Toc222634560][bookmark: _Toc220809715][bookmark: _Toc220300617]Summary and Recommendations
Testing showed that the core Microsoft Dynamics CRM 4.0 solution met or exceeded the performance and scalability requirements of <Customer> in most areas, in particular:
· The initial expected user volume of 1,200 concurrent users can be handled by two CRM Application Servers, two CRM Platform Servers and a single high specification SQL Server.
· A single CRM Platform Server can handle expected throughput of 6000 workflows/hour
· The Application Server tier can easily by scaled out by adding servers, but scaling out the platform servers will not provide for significant growth because the primary constraints are on the SQL tier and in particular on the ‘asyncoperationsbase’ table. Additional tuning in this area would be required to improve performance further.
· Solution availability is good; application handles failure of a single component gracefully.
· Synchronous Workflows can be implemented on top of the CRM asynchronous workflow engine at the expected load however there are outstanding issues with implementing a Production strength version of this (see below).
A few items were also identified that require further work to meet <Customer>’s requirements.
1. ASync Workflow. There is a current lack of documentation around the inner workings of the Microsoft Dynamics CRM asynchronous workflow engine. <Customer> would like to have a much better understanding of CRM 4.0 workflow:
· Workflow Status – How to monitor current workflow status (custom SQL was built this week to help with this but this is though reverse engineering the SQL tables and though trial and error). It would be helpful to have some agreed / provided reports that show the state of workflow in the system, the current backlog etc.
· Workflow Tuning – What all the parameters in the CRM DeploymentProperties table actually do; what is recommended to optimize these settings for them – Again through trial and error we have made some significant improvements reducing the typical number of in process workflows from over 1000 to less than 5 under the same workload.
· Workflow Stability- How to identify any workflows that have timed out and retry them to ensure that the workflows complete successfully. Given the volume of workflows they are looking at this cannot be a manual process and they need to be able to rely on the workflow completing.
Recommendations. A definition of each of the deployment properties associated with the async engine has been provided by the product group in Appendix B.
It is recommended that <Customer> and <C-Team> continue work started during the load test exercise to write custom SQL that identifies the state of the workflow backlog. This could be wrapped in a few SQL Reporting Services Reports to provide workflow status information in a more accessible format. A custom scheduled process should also be written to allow timed out workflows to be automatically restarted. This would be a relatively straightforward piece of development.
Both of these enhancements will need to be custom developed and will therefore need to be built by <Customer>, <C-Team> or another partner. If required Microsoft Consulting Services can assist with these items on a billable basis.
2. Synchronous Workflow. A method of prioritizing Synchronous Workflow is required. We achieved the target throughput but if at any point the system builds up a backlog for any reason all synchronous workflow in the system get queued behind the backlog and the synchronous workflows in the UI stop responding. A method of prioritization needs to be identified for the current synchronous workflow solution to be a realistic option.
Recommendations. CRM does not currently provide a method for synchronous workflow requests. The proof-of-concept solution we developed for the load test represents one possible solution to meet the throughput and response time requirements of <Customer>, but without a method of prioritization of synchronous requests, this approach has limitations. Carrying the design forward to the final solution will require additional work. Potential considerations include:
· Looking at possible options to synchronize the cache between the NLB web servers using a distributed cache such as Microsoft “Velocity” to improve scalability.
· Identifying a method of prioritizing the synchronous workflow requests above the asynchronous workflows would be needed so that a backlog of asynchronous workflows does not impact performance of synchronous workflows.
This should be the work of the consulting team implementing CRM and if required Microsoft Consulting Services could provide additional investigation, design and build assistance in this area on a billable basis. It is recommended that work started during the load test exercise to write custom SQL that identifies the state of the workflow backlog is continued by <Customer> and <C-Team>. This could be wrapped in a few SQL Reporting Services Reports to provide workflow status information in a more accessible format.
3. Duplicate Detection. A solution to allow the frequency of the duplicate detection matchcode system jobs to be updated. We tried changing the parameters we expected this to be in the deployment properties table but it appeared to have no effect. Some further work in this area is required. It may be as simple as republishing the duplicate detection rules after applying the changes.
Recommendations. A definition of each of the deployment properties associated with the async engine has been provided by the product group in Appendix B.
The correct deploymentproperty in the MSCRM_CONFIG database to configure this is: DupMatchcodePersistenceInterval
It is recommended that a support case should be raised for assistance in this matter if this does not work as expected.piece of development.

[bookmark: _Toc222634561]Conclusion
In conclusion, excluding the Synchronous Workflow capability, the Microsoft CRM solution proposed for <Customer> would run with good performance on a hardware platform similar to that used in the tests. In addition this would provide scope for a significant level of growth in terms of the database size, number of users and the activity level of those users. The proposed architecture additionally provides a good level of solution availability and scalability however as with any solution of this size and complexity where system performance is vital for the success of the solution performance needs to be considered throughout the design, build, test and deploy/optimize phases.
The Synchronous Workflow proof-of-concept that was built and tested during the load test exercise indicated that it is possible to run a synchronous workflow solution on top of the asynchronous engine with good performance at the current level of activity, However, this approach does not provide much additional capacity for growth or the capability to handle any unexpected increases in volumes.

[bookmark: _Toc222634562][bookmark: _Toc220809716][bookmark: _Toc220300618][bookmark: _Ref153786915]Appendix A – Additional Dynamics CRM 4.0 Benchmark Testing Results
Microsoft, together with Unisys Corporation, completed benchmark testing of Microsoft Dynamics CRM 4.0 running on Microsoft® Windows Server® 2008 operating system and Microsoft SQL Server® 2008 database software. Benchmark results demonstrate that Microsoft Dynamics CRM can scale to meet the needs of an enterprise.
Testing results are provided in a series of four white papers targeting performance and scalability, as shown in the following table:
	Title
	Description

	Enterprise Performance and Scalability
	This white paper provides an overview of the results and benefits of performance and scalability enhancements in Microsoft Dynamics CRM 4.0.

	Performance and Scalability – User Scalability for the Enterprise
	These benchmark results demonstrate that Microsoft Dynamics CRM can scale to meet the needs of an enterprise-level, mission-critical workload of 24,000 concurrent users while maintaining performance at sub-second response times. Test results were achieved without customizations to simulate an out-of-the-box Microsoft Dynamics CRM deployment. This white paper describes the goals, methodology and detailed results of this benchmark.

	Performance and Scalability – Database Scalability for the Enterprise
	These benchmark results demonstrate that Microsoft Dynamics CRM can scale to data volumes of over 1 billion database records while maintaining performance at sub-second response times. Test results were achieved without customizations, and minimal optimization to simulate an out-of-the-box Microsoft Dynamics CRM deployment. This white paper describes the goals, methodology and detailed results of this performance benchmark.

	Performance and Scalability – Bandwidth Utilization Improvements
	Microsoft Dynamics CRM showed network utilization improvements of up to 94% in version 4.0. This white paper details the test results comparing version 3.0 to 4.0.


To download a copy of these white papers, on Microsoft Downloads, see Microsoft Dynamics CRM 4.0 Performance and Scalability White Papers at
http://www.microsoft.com/downloads/details.aspx?FamilyID=5852b14a-394c-4898-8374-caf5e6479eb0&DisplayLang=en

[bookmark: _Toc222634563][bookmark: _Toc220809717][bookmark: _Toc220300619]Appendix B – Workflow Settings in CRM
The configurable workflow settings that are held in the deploymentproperties table are described below.
	Item
	Description

	AsyncItemsInMemoryHigh
	Max number of async operations the service will store in memory. Upon selection interval, if the number of items in memory falls below AsyncItemsInMemoryLow, the service will pick enough to reach up to AsyncItemsInMemoryHigh again.

	AsyncItemsInMemoryLow
	Minimum number of async operation the service needs to have in memory before loading new jobs into memory. Upon selection interval, if the number of items in memory falls below this value, the service will pick up enough to reach AsyncItemsInMemoryHigh again.

	AsyncJobMaxExecutionTime
	Used for organization maintenance jobs only to determine if a job has timed out. Every AsyncJobTimeoutLockedInterval, the service will query to determine if a job has been running longer than the AsyncJobMaxExecutionTime.

	AsyncJobOrgDatabaseMaintenanceInterval
	Interval used to query to see if there is a pending organization maintenance job. 

	AsyncJobTimeoutLockedInterval
	Interval used to query to see if there are any organization maintenance jobs that have timed out. Every AsyncJobTimeoutLockedInterval, the service will determine if any job has been running longer than AsyncJobMaxExecutionTime.

	AsyncKeepAliveInterval
	Interval used to update currently executing async operations so that they do not time out.

	AsyncMaximumPriority
	Used to manage active vs. inactive organizations on selection intervals so that all organizations are provided the opportunity to have jobs selected for execution.

	AsyncMaximumRetries
	Maximum number of times the service will retry an operation before it is marked failed without further retries.

	AsyncMaximumSelectInterval
	Maximum time an organization can wait in lower priority before being queried against for pending operations.

	AsyncMaximumThreadsPercent
	The maximum percentage of ThreadPool threads the AsyncService will use to queue operations for execution.

	AsyncMoveToReadyInterval
	The used to move async operations from the suspended state to the ready state.

	AsyncRetryBackoffRate
	The rate of exponential back-off between failing async operation retries.

	AsyncSdkRootDomain
	Root domain used for calls into the CRM Service and Metadata Service from the Async service

	AsyncSelectInterval
	Interval used to determine if new async operations should be loaded into memory.

	AsyncStateStatusUpdateInterval
	Interval at which all pending database operations are executed. Primarily used to update the state and status of async operations that have completed.

	AsyncStateStatusUpdateMaxRetryCount
	Maximum number of times a database operation will be attempted before failure.

	AsyncTimeBetweenRetries
	The default rate of back-off for failed async operations. This is multiplied by the exponential back-off calculated from the AsyncRetryBackoffRate.

	AsyncTimeoutLockedInterval
	Interval used to query to see if there are any aysnc operations that have timed out. Every AsyncTimeoutLockedInterval, the service will determine if any operation has been locked longer than AsyncTimeUntilLockExpires.

	AsyncTimeUntilLockExpires
	Used for organization async operations to determine if it has timed out. Every AsyncTimeoutLockedInterval, the service will query to determine if an operation has been locked longer than AsyncTimeUntilLockExpires.

	AsyncWaitSubscriptionInterval
	Interval at which workflows that are waiting on specific events are re-re-evaluated to determine if the event has taken place.



[bookmark: _Toc222634564][bookmark: _Toc220809718][bookmark: _Toc220300620]Appendix C – Microsoft “Velocity”
The Microsoft project code-named “Velocity,” a distributed cache solution, provides a highly scalable in-memory application cache for all kinds of data. Using cache avoids unnecessary calls to the data source, which can significantly improve application performance. Distributed cache enables an application to match increasing demand with increasing throughput by using a cache cluster that automatically manages the complexities of load balancing.
With "Velocity," you can retrieve data by using keys or other identifiers, named "tags." "Velocity" supports optimistic and pessimistic concurrency models, high availability, and a variety of cache configurations. It includes an ASP.NET session provider object that enables storing ASP.NET session objects in the distributed cache without having to write to databases, which increases the performance and scalability of ASP.NET applications.
You can deploy “Velocity” using an “Embedded Mode” model, which makes it part of the ASP.NET application.
[image: ]
“Velocity” provides a SessionStoreProvider class that plugs into the ASP.NET session storage provider model and stores session states in a partitioned cache. Using “Velocity” to store session data enables non-sticky routing and ensures that session information is available across the cluster. ASP.NET applications can scale by adding more nodes and by configuring secondary caches for the session data, thereby increasing availability.
SessionStoreProvider will replace the use of HttpContext.Current.Cache in the solution described above.
“Velocity” will give us the assurance that our workflow state data will be available across all the servers in our NLB deployment.
Note: For more information, on MSDN, see Microsoft Project Code Named “Velocity” at
http://msdn.microsoft.com/en-us/data/cc655792.aspx

Run Test


Analyze Results


Tune Platform


Tune Configuration


Tune Custom Components


Fix Data


Update Test Scripts

















Rerun Clean Test


Analyze Findings


Document Results





image6.jpeg

image7.emf

image8.emf

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.jpeg

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.emf

image22.emf

image23.emf

image2.jpeg

image24.emf

image25.emf

image26.emf

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image5.png

image3.jpeg

image4.jpeg

